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Abstract. We prove a genus zero Givental-style mirror theorem for all complete intersec-

tions in toric Deligne-Mumford stacks, which provides an explicit slice called big I-function
on Givental’s Lagrangian cone for such targets. In particular, we remove a technical assump-

tion called convexity needed in the previous mirror theorem for such complete intersections.

In the realm of quasimap theory, our mirror theorem can be viewed as solving the quasimap
wall-crossing conjecture for big I-function [CFK16] for these targets. In the proof, we dis-

cover a new recursive characterization of the slice on Givental’s Lagrangian cone, which may

be of self-independent interests.
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1. Introduction

In the past few decades, following predictions from string theory [CDLOGP91], a series
of results known as mirror theorems has been proven; an incomplete list is [Giv96, CCIT15,
CG07,Zin08,Giv98,CCLT09,LLY99,GJR17]. These theorems reveal elegant patterns and deep
structures encoded in the collection of Gromov-Witten invariants of a given symplectic manifold
or orbifold X. However, the scope of these results, and much of Gromov-Witten theory in
general, is closely related to the world of toric geometry1; in all cases above, X is a toric
variety/orbifold or certain complete intersection(See the discussion of convexity below) in a
toric variety/orbifold. The essential reason for this is that one of most efficient way to compute
Gromov-Witten invariants is to utilize the technique of the localization theorem [AB95,GP99],
which requires the targets to be carried with a good torus action.

Smooth hypersurfaces (or complete intersections in general) in toric Deligne-Mumford stacks2

are the next class of spaces to consider, but much less is known in this situation. The main diffi-
culty comes from that a hypersurface in a toric stack doesn’t have any nontrivial torus action in

Date: Saturday 10th June, 2023.
1By using the abelian-nonabelian correspondence, one can further extend the scope to include partial flag

varieties [CFKS08,BCFK08] and other nonabelian GIT quotients like Nakajima quiver variety [Web23].
2We treat orbifold and Deligne-Mumford stack as synonyms.
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general. Hence one can’t directly apply localization theorem to compute the Gromov-Witten in-
variants of the toric hypersurface. Alternatively, the usual way to compute the Gromov-Witten
invariants of a given hypersurface is to use quantum Lefschetz principle [KKP03], which relates
the Euler-twisted virtual cycle of an ambient space X to the virtual cycle of its hypersurface Y
which is the zero locus of a section of a given line bundle L on X. However, there is a technical
assumption called convexity for the line bundle L to apply the quantum Lefschetz principle.
The convexity says, for any stable map f : C → X of fixed genus and degree, one has

H1(C, f∗L) = 0 ,

which holds, for example, when the ambient space X is a projective variety, the source curve
C is of genus zero and L is a positive line bundle on X, and which doesn’t hold, for example,
when the ambient space X is a weighted projective space P(w1, · · · , wn) and the line bundle
L ∼= O(d) satisfies that d is a positive integer which is not divided by all wi. Hence, it’s
naturally to ask whether we can relax the condition from convexity to positivity to ensure the
quantum Lefschetz principle to hold. Unfortunately, a counterexample was found in [CGI+12]
that quantum Lefschetz principle can fail for positive hypersurfaces in orbifolds. As a result,
there are limited methods to compute the genus zero Gromov-Witten invariants of orbifold
hypersurfaces where the convexity fails (see [Gué19] for a recent update for certain hypersurfaces
in weighted projective spaces), and a genus zero mirror theorem3 for these targets is lacking for
a long time in the literature.

Quasimap theory, developed by Kim-Fontanine-Maulik and others, is a variation of Gromov-
Witten theory and it’s adapted to a wide class of GIT targets including complete intersection
in toric orbifolds, Grassmanian and so on. Using quasimap theory, one can often calculate an
explicit formula called big I-function, which is related to Gromov-Witten invariants by the so
called genus zero quasimap wall-crossing conjecture [CFKM14,CCFK15,CFK16], which states
the big I-function is a slice on the Lagrangian cone [Giv04]. Therefore we can use the big
I-function to calculate Gromov-Witten invariants of toric complete intersections in the non-
convex case once we solve the genus zero quasimap wall-crossing conjecture in such cases. The
wall-crossing conjecture has been proved for GIT targets with a good torus action including
toric orbifolds or complete intersections for which the convexity holds as a result of quantum
Lefschetz principle and twisted version of the quasimap invariants. We will prove new cases of
this conjecture to extend the validity to all toric complete intersections in this paper.

1.1. Main results and Ideas of proof.

1.1.1. Big I−function. Let X be a proper toric Deligne-Mumford stack constructed by a GIT
data (W = ⊕ρ∈[n]Cρ, G = (C∗)k, θ), and ι : Y ⊂ X is a complete intersection with respect to
a direct sum of line bundles ⊕cb=1Lτb on X (See §3 for more details). Now we introduce the
following cohomology-valued series called big I-function (or I-function in short) of the toric

3In Givental’s formalism, a mirror theorem usually means to construct an explicit slice on the Lagrangian

cone.
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stack complete intersections:

I(q, t, z) =
∑

β∈Eff(W,G,θ)

qβexp
(1

z

l∑
i=1

tiui(c1(Lπj ) + β(Lπj )z)
)

∏
ρ:β(Lρ)<0

∏
β(Lρ)<i<0(Dρ + (β(Lρ)− i)z)∏

ρ:β(Lρ)>0

∏
06i<β(Lρ)(Dρ + (β(Lρ)− i)z)

·

∏
b:β(Lτb )>0

∏
i:06i<β(Lτb )(c1(Lτb) + (β(Lτb)− i)z)∏

b:β(Lτb )<0

∏
i:β(Lτb )<i<0(c1(Lτb) + (β(Lτb)− i)z)

i∗(s
!
Eβ ,loc

([Zssβ /(G/〈g−1
β 〉)])) .

(1.1)

We remark here i∗(s
!
Eβ ,loc

([Zssβ /(G/〈g
−1
β 〉)])) andDρ are elements of the cohomologyH∗(ĪµY,Q).

t =
∑l
i=1 tiui(c1(Lπj )) is an element in H∗(Y,Q)[t1, · · · , tl]. See §3 for more details about the

terminology appearing in I(q, t, z).
Now we state our main theorem:

Theorem 1.1 (Main Theorem). −zI(q, t,−z) is a slice on Givental’s Lagrangian cone of the
toric complete intersection Y . More explicitly, let µ(z) := [zI(q, t, z)− z1Y ]+ be the truncation
in nonnegative z powers, then we have the following identity:

(1.2) I(q, t, z) = J(q, µ(y), z),

where J(q, µ(y), z) is defined by the J−function

J(q, t, z) :=1Y +
t(z)

z

+
∑

β∈Eff(W,G,θ)

∑
m>0

qβ

m!
φα〈t(−ψ̄1), · · · , t(−ψ̄m),

φα
z(z − ψ̄?)

〉0,[m]∪?,β .

Here the input t is an element in (q, t)H∗(ĪµY,Q)[y][[t1, · · · , tl]][[Eff(W,G, θ)]]4, and t(z) (resp.
t(−ψ̄i)) means that we replace the variable y in t by z (resp. −ψ̄i).

Note that here for any degree β ∈ Eff(W,G, θ) of X (c.f. Definition 2.4), we will denote the
Gromov-Witten invariant

φα〈t(−ψ̄1), · · · , t(−ψ̄m),
φα

z(z − ψ̄?)
〉0,[m]∪?,β

to be ∑
d∈Eff(AY,G,θ)

i∗(d)=β

φα〈t(−ψ̄1), · · · , t(−ψ̄m),
φα

z(z − ψ̄?)
〉0,[m]∪?,d ,

where Eff(AY,G, θ) is semigroup of degrees of Y .

Remark 1.2. The term µ(z) above is closely related to the procedure of Birkohoff factoriza-
tion is the literature, from which we can get a closed-form J−function J(q, τ, z) with input
τ ∈ H∗(ĪµY,Q)[[t1, . . . , tl]][[Eff(W,G, θ)]] having no z−terms, see e.g., [CCIT19] for more de-
tails. Actually the term τ , which is usually called a mirror map in the literature, is uniquely
determined by µ(z) by the so-called Dijkgraaf–Witten formula [DW90].

The reader may also wonder how to apply this mirror theorem to calculate GW invari-
ants(e.g. small quantum product); we present one example in §7, where we imitate the idea

4It means that t admits an expression as
∑

(β,i1,··· ,il)6=0 q
βti11 · · · t

il
l fβ,i1,··· ,il , where fβ,i1,··· ,il ∈

H∗(ĪµY,Q)[y]. This choice of input t gives a much less general definition of Givental’s J−function in the

usual literature, but it suffices for the need in this paper.



4 JUN WANG

used in [CCIT19] of computing GW invariants for toric stacks using extended variables from
S−extended fan (Although the fan language for toric stacks is not used in this paper, we in-
stead use the GIT setting. But these two approaches are equivalent. Further discussion of this
equivalence can be found in [Wan]).

1.1.2. Sketch of the proof of the main theorem. Before sketching the proof of the main theorem,
let’s analyze the term µ(z) appearing in our main theorem. Write zI(q, t, z) as a formal Laurent
series in variable z, z−1:

· · ·+ I−1(q, t)z2 + I0(q, t)z + I1(q, t) +O(z−1),

then µ(z) can be expressed as:

µ(z) := [zI(q, t, z)− z1Y ]+ = · · ·+ I−1(q, t)z2 + (I0(q, t)− 1Y )z + I1(q, t) .

By the definition of I(q, t, z), zI(q, t, z) admits an asymptotic expansion in q, t:

zI(q, t, z) = z1Y +O(q) +O(t),

which implies that µ(z) belongs to the space (q, t)H∗(ĪµY,Q)[z][[t1, · · · , tl]][[Eff(W,G, θ)]].
Let I(q, z) := I(q, 0, z), we can expand I(q, z) as

I(q, z) =
∑

β∈Eff(W,G,θ)

qβIβ(z) ,

where Iβ(z) ∈ H∗(ĪµY,Q)[z, z−1]. Then we can decompose I(q, t, z) as a formal sum

I(q, t, z) =
∑

β∈Eff(W,G,θ)

∞∑
p=0

qβ
tp

p!zp
Iβ(z) .

where t =
∑l
i=1 tiui(c1(Lπj )+β(Lπj )z). For nonzero pair (β, p), set µβ,p(z) := [

tpzIβ(z)
p!zp ]+ as the

truncation in nonnegative z powers. We note that µβ,p(z) is a polynomial inH∗(ĪµY,Q)[t0, · · · , tl, z]
of homogeneous degree p in variables t1, · · · , tl. Then we can write µ(z) as a sum

(1.3) µ(z) =
∑

β∈Eff(W,G,θ)

∑
p∈Z>0

qβµβ,p(z) .

where µ(0,0) = 0, which we will also denote to be µ0.
Multiply by z on both sides of (1.2), we observe that, to prove the main theorem, it suffices

to prove that, for arbitrary pair (β, p) ∈ Eff(W,G, β) × N and any nonnegative integer c, one
has

[z
tp

p!zp
Iβ(z)]z−c−1 :=

∞∑
m=0

∑
β?+β1+···+βm=β
p1+···+pm=p

1

m!
φα〈µβ1,p1

(−ψ̄1), · · · , µβm,pm(−ψ̄m), φαψ̄
c
?〉0,[m]∪?,β? .

(1.4)

The idea to prove (1.4) is to show that both sides of (1.4) satisfy the same recursive relations
(see Theorem 6.4 and Theorem 6.6) by induction on the nonnegative integer β(Lθ) + p. This is
done by considering two master spaces carried with C∗−actions (see §4.1 and §5.1), which are
root-stack modifications of the twisted graph spaces. Then we apply virtual torus localization
to express two auxiliary cycles (see (6.2) and (6.9)) corresponding to two master spaces in graph
sums and extract λ−1 coefficients (λ is an equivariant parameter). Finally, the polynomiality
of the two auxiliary cycles implies that the coefficients for λ−1 term must vanish, from which
they yield the same type of recursive relations (see also Theorem 6.4 and Theorem 6.6) which
finish the proof of the quasimap wall-crossing.
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The quasimap wall-crossing conjecture for the big I-function was proven in [CFK16] for GIT
targets possessing a good torus action or their complete intersections that fulfill convexity. Hav-
ing a good torus action is described as having finite torus-fixed points and all one-dimensional
torus-fixed orbits being isolated. The requirement of having a good torus action is essential in
the previous proof of the big I-function since it allows for the characterization of a slice on the
Lagrangian cone (or the twisted Lagrangian cone5). This characterization is established on the
basis of having good torus action (c.f.[CFK14, Giv96, Bro13]). Consequently, it is natural to
inquire whether it is possible to characterize a slice on the Lagrangian cone for targets lacking
a good torus action. In this paper, we present one characterization (see Theorem 6.6) which
can be adapted to general targets. This new result is expected to provide insights into other
questions in Gromov-Witten theory as well.

The first version of this paper, available on arXiv, contains a section on explaining how
to compute I-functions using quasimap theory, which was later realized by the author to be
unnecessary in proving the mirror theorem. This highlights a unique aspect of the our method:
we find a new recursive relation, detailed in Theorem 6.6, used to characterize the slice on the
Lagrangian cone. To apply this new characterization, a suitable master space 6 together with
a suitable auxiliary cycle is required to provide a recursive relation of the same type. From
this, the explicit expression of the J-function can be obtained from a specific subgraph sum
of the localization contribution. This naturally raises the question of whether other auxiliary
master spaces can be found to prove a mirror theorem that was previously inaccessible. Further
elaboration on this topic will be presented elsewhere7. For readers interested in the source of
these I-functions, the first version of this paper on arXiv(which applies only to semi-positive
hypersurfaces but can be extended to all complete intersections) or Rachel Webb’s work [Web21]
may be consulted. In her work, Webb obtains I-functions for all complete intersections in GIT
quotients with possible non-abelian group actions, using the quasimap graph space directly and
avoiding the p-fields method used in the author’s first version.

During the preparation of this work, the author learns that Yang Zhou has used a totally
different method to prove the quasimap wall-crossing conjecture for all GIT quotients and all
genera [Zho22], which in particular implies the mirror theorem proved in this paper without
exponential factor (but his formula is in less explicit form). The author also learns that Felix
Janda, Nawaz Sultani and Zhou computed the (S-extended) I-function for some Calabi-Yau
hypersurface in weighted projective spaces and use it to calculate Gromov-Witten invariants.

1.2. Outline. The rest of this paper is organized as follows. In §2, we will recall the quasimap
theory, the author wants to draw readers’ attention to the language of θ′-stable quasimaps (see
Remark 2.3), where θ′ can be a rational character, because it is more suitable than the language
of ε-stable quasimaps for the later construction of the master space in §4. In §3, we collect
some important facts about (rigidified) inertia stack of toric stack complete intersections, and
compare them with rigidified inertia stack of toric stacks. Some special cycles in the inertia stack
will be discussed as they will be appeared in our I−function. In §4 and §5, we will construct
two master spaces which carry C∗-actions, a very explicit C∗-localization computation which is
based on localization computations [CJR17a,JPPZ17] will be presented, this part is technical,
we encourage the reader to skip to go to §6 first and to refer back when needed. In §6, we
will calculate two auxiliary cycles corresponding to the two master spaces via localization, they
provide recursive relations to prove the genus zero quasimap wall-crossing conjecture for toric

5By leveraging the quantum Lefschetz principle, we can utilize the twisted analogue of the I-function
quasimap wall-crossing to establish the I-function quasimap wall-crossing for complete intersections for which

the convexity holds.
6In our case, this corresponds to the space constructed in §4.
7See the author’s recent preprint [Wan23].
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stack hypersurfaces. In §7, we calculate the small quantum product of a cubic hypersurface in
P(1, 1, 1, 2).

Notations: In this paper, we will always assume that all algebraic stacks and algebraic
schemes are locally of finite type over the base field C. Given a GIT target (W,G, θ), we
will use symbols X,Y... to mean the quotient stack [W/G], symbols X,Y ... to mean the
corresponding GIT stack quotient [W ss(θ)/G], IµX, IµY ... to mean the corresponding inertia
stacks, and ĪµX, ĪµY ...to mean the corresponding rigidified inertia stacks.

We will use the following construction a lot throughout this paper.

Definition 1.3 (Borel Construction). Let G be a linear algebraic group and W be a variety.
Fix a right G-action on the variety W . For any character ρ of G, we will denote Lρ to be the
line bundle on the quotient stack [W/G] defined by

W×G Cρ := [(W×Cρ)/G] ,

where Cρ is the 1-dimensional representation of G via ρ and the action is given by

(x, u) · g = (x · g, ρ(g)u) ∈W×Cρ
for all (x, u) ∈W×Cρ and g ∈ G. For any linear algebraic group T , if we have a left T -action
on W which commutes with the right action of G, we will lift the line bundle Lρ defined above
to be a T -equivariant line bundle, which is induced from the (left) T action on W×Cρ in the
way that T acts on Cρ trivially. By abusing notations, we will use the same notation Lρ to
mean the corresponding invertible sheaf (or T−equivariant invertible sheaf) over [W/G] unless
stated otherwise.

2. Background on quasimaps

We first recall the definition of a quasimap to a GIT target, our main reference is [CFKM14,
CCFK15,CFK16]. By a GIT target, we mean a triple (W,G, θ), where W is an irreducible affine
variety with locally complete intersection (l.c.i) singularity, G is a reductive group equipped
with a right G−action on W and θ is an (integral) character of G. denote by X := [W/G] the
quotient stack. denote by W ss (or W ss(θ)) the semistable locus in W , and by W s (or W s(θ))
the stable locus. Throughout out this paper, for a GIT target (W,G, θ), we will always assume
that W ss(θ) = W s(θ) and the GIT stack quotient

X := [W ss(θ)/G]

is a smooth Deligne-Mumford stack, under which condition, X is always semi-projective, i.e.
it’s proper over the affine GIT quotient Spec(C[W ]G) by the proj-construction of GIT quo-
tient [CCFK15, §2.2][MFK94]:

X = Proj⊕∞n=0 Γ(W,W×Cnθ)G.
Let e be the least common multiple of the exponents |Aut(x̄)| of automorphism groups

Aut(x̄) of all geometric points x̄ → X of X. Then, for any character ρ of G, the line bundle
L⊗eρ is the pullback of a line bundle from the coarse moduli X of X, here the line bundle Lρ is
defined by the Borel (mixed) construction 1.3.

Definition 2.1. Given a scheme S over Spec(C), f = ((C, q1, · · · , qm), P, x) is called a
quasimap over S (alternatively θ-quasimap over S) of class (g,m, β) if it consists of the fol-
lowing data:

(1) (C, q1, · · · , qm) is a flat family of genus g twisted curves over S [AGV08, §4], and m
gerbe marked sections q1, · · · , qm over S, here we don’t require the gerbe sections to be
trivialized;

(2) P is a principal G-bundle on C;
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(3) x is a section of the affine W−bundle (P ×W )/G over C so that it determines a
representable morphism [x] : C → X = [W/G] as the composition

C
x // (P ×W )/G // [W/G] .

We say that the quasimap f is of degree β ∈ HomZ(Pic(X),Q) if β(L) = deg([x]∗L)
for every line bundle L ∈ Pic(X);

(4) The base locus of [x] defined by [x]−1(X\X) is purely of relative dimension zero over S.

Sometimes we may also use the notation f : (C, q = (qi)) → X to mean a quasimap (or
θ-quasimap). A quasimap f is prestable (or θ−prestable) if the base locus are away from nodes
and markings.

Remark 2.2. We can extend the definition of θ-prestable quasimap to allow any rational
character θ′ such that θ′-prestable quasimap is same as αθ′-prestable quasimap for any α ∈ Q>0.

Consider a prestable quasimap f , since the base point is away from nodes and marking
points, for each q ∈ C, as in [CFKM14, Definition 7.1.1], we define the length function lθ(q) as
follows:

(2.1) lθ(q) = min{ ([x]∗s)q
n

| s ∈ Γ(W,W×Cnθ)G, [x]∗s 6= 0, n ∈ Z>0} ,

where ([x]∗s)q is the coefficient of the divisor ([x]∗s) at q. Note that here the length function
lθ depends on the integral character θ. We have the following important observation about the
length function lθ: choose α ∈ Q>0 such that θ′ = 1

αθ is another integral character. Then

lθ = αlθ′ ,

then the length function lθ can be defined for any rational character θ′, i.e. choose α ∈ Q>0

and an integral character θ such that θ′ = αθ, then we define

lθ′ := αlθ

as in [CFK16, Definition 2.4], Note that the definition of lθ′ is independent of decomposition
of θ′ as a product of positive rational number α and an integral character θ by the above
observation.

Fix a positive rational number ε ∈ Q>0. Given a prestable quasimap f over Spec(C), we say
f is a ε-stable quasimap to X if f satisfies the following stability condition:

(1) the Q−line bundle (φ∗([x]∗Leθ))
ε
e ⊗ ωlogC on the coarse moduli curve C of C is ample.

Here φ : C → C is the coarse moduli map. Note that the line bundle [x]∗Leθ on C a
pullback of a line bundle on the coarse curve C by the choice of e and the prestable

condition. Here ωlogC = ωC(
∑m
i=1 qi) is the log dualizing invertible sheaf of the coarse

moduli C;
(2) εlθ(q) 6 1 for any q ∈ C.

Remark 2.3 (θ′-quasimap). Using the above generalization of length function lθ′ for a rational
character θ′, we can give the definition of θ′-stable quasimap: given a θ′-prestable quasimap
f = ((C, q1, · · · , qm), [x]), we say f is a θ′-stable quasimap to X if

(1) the Q−line bundle (φ∗([x]∗Lbeθ′))
1
be ⊗ωlogC on the coarse moduli curve C of C is ample.

Here φ : C → C is the coarse moduli map, and b is a positive integer which makes bθ′

an integral character. Note that the ampleness is independent of choice of the positive
integer b.

(2) lθ′(q) 6 1 for any q ∈ C.
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Given a GIT target (W,G, θ), following [CFK16, Propsition 2.7], an essentially equivalent
definition about ε-stable quasimaps to X is, but from a different point of view, the concept
of a εθ−stable quasimap to X. The concept of θ′-stable quasimap will play an important role
in the construction of master space in section 4. For a rational character θ′ of G, we will use
the notation Qθ

′

g,m(X, β) to mean the moduli stack of θ′-stable quasimaps to the quotient stack

X of class (g,m, β). If we choose θ′ = εθ, then the space Qθ
′

g,m(X, β) is same as the space
Qε0,m([W ss(θ)/G], β) of ε-stable quasimaps we introduced before.

We call a prestable quasimap f over a scheme S is ε-stable if for every C-point s of S, the
restriction of f over s is ε-stable. We call f is 0+stable if f is ε−stable for every positive
rational number ε ∈ Q>0.

Definition 2.4. A group homomorphism β ∈ HomZ(PicX,Q) is called Lθ-effective if it is
realized as a finite sum of classes of some quasimaps to X. Such elements form a semigroup
with identity 0, denoted by Eff(W,G, θ).

We will need the following lemma proved in [CCFK15, Lemma 2.3].

Lemma 2.5. If ((C, q), [x]) is a quasimap of degree β, then β(Lθ) > 0. Moreover, β(Lθ) = 0
if and only if β = 0, if and only if the quasimap is constant (i.e., [x] is a map into X, factored
through an inclusion BΓ ⊂ X of the classifying groupoid BΓ of a finite group Γ).

In the following, we will give an explicit description of quasimaps to toric Deligne-Mumford
stacks.

Example 2.6 (Quasimaps to toric stack). Recall the construction of a (semi-projective) toric
Deligne-Mumford stack (or toric stack in short) by a GIT data (W,G, θ). Let G = (C∗)k, and
W := ⊕ni=1Cρi be a direct sum of 1-dimensional representations of G given by the characters
ρi ∈ χ(G) for 1 6 i 6 n. We will denote [n] to be the tuple of (not necessarily distinct)
characters ρi of G for 1 6 i 6 n. The toric stack X is defined to be the GIT stack quotient

[W ss(θ)/G].

Since we always assume that W ss(θ) = W s(θ), then X is a semi-projective Deligne-Mumford
stack. i.e., proper over an affine scheme.

Then in the definition of quasimaps to the toric stack X, we can replace the principal
G−bundle P by k line bundles (Lj : 1 6 j 6 k) on C, and replace the section x in the
definition of quasimap by n sections

~x = (xi : 1 6 i 6 n) ∈ ⊕ρ∈[n]Γ(C,Lρ) ,

where Lρ is a line bundle on C defined by

Lρ = ⊗kj=1L
⊗mj
j ,

where and the numbers (mj : 1 6 j 6 k) are determined by the unique relation

ρ =

k∑
j=1

mjπj

in the character group χ(G) of G. Here (πj : 1 6 j 6 k) are the standard characters of
G = (C∗)k by projecting to coordinates.

One novel application of θ′−stable quasimap for a rational character θ′ is the use of the
notion of (θ′, ε)−stable quasimap introduced in [CFK16].
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Definition 2.7. [(θ′, ε)-stable quasimap] Given a tuple ε = (ε1, · · · , εp) ∈ (Q>0 ∩ (0, 1])p, we
will call prestable quasimap f := (C, q, f : C → [W/G]× [C/C∗]p) a (θ′, ε)-stable quasimap to
X of type (g,m, β) if f defines a θ′ ⊕

⊕p
i=1 εiidC∗-stable quasimap to [W/G]× [C/C∗]p of type

(g,m, (β, 1, · · · 1)). We will denote Q
(θ′,ε)
g,m|p(X, β) to be the moduli stack of (θ′, ε)-stable quasimaps

to X of type (g,m, β). We call f is (θ′, (0+)p)-stable if f is (θ′, ε)-stable for all ε ∈ Qp>0. And

we will denote Qθ
′,0+
g,m|p(X, β) to be the moduli stack of (θ′, (0+)p)-stable quasimaps to X of type

(g,m, β).

Remark 2.8. It’s shown in [CFK16] that a (θ′, ε)-stable map to X is equivalent to a ε-weighted
θ-stable map to X, i.e. the source curve is allowed to be a Hassett-stable curve with additional

p ε−weighted markings. Thus the moduli stack Qθ
′,ε
g,m|p(X, β) is equipped with p additional

universal evaluation maps to X (not only to X). We will denote them by

êvj : Q
(θ′,ε)
g,m|p(X, β)→ X, 1 6 j 6 p .

2.1. Quasimap invariants. We define the quasimap invariants in this section following [CFK14,
CFKM14, AGV08, CCFK15]. Consider an algebraic torus T action on W , which commutes
with the given G−action on W , here T can be the identity group. Assume further that
the T−fixed loci XT

0 of the affine quotient X0 = Spec(C[W ]G) is 0−dimensional. We also
denote K := Q({λi}) by the rational localized T -equivariant cohomology of SpecC, with
{λ1, . . . , λrank(T )} corresponding to a basis for the characters of T . denote

ΛK := K[[Eff(W,G, θ)]]

to be the corresponding Novikov ring. We write qβ for the element corresponding to β in ΛK
so that ΛK is the q-adic completion.

Given any two elements α1, α2 in the T−equivariant Chen-Ruan cohomology of X,

H∗CR,T (X,Q) := H∗T (ĪµX,Q) ,

We can define the Poincaré pairing in the non-rigidified cyclotomic inertia stack IµX of X”:

〈α1, α2〉orb :=

∫
∑
r∈N>1

r−1[ĪµrX]

α1 · ι∗α2 .

Here ι is the involution of ĪµX obtained from the inversion automorphisms. Therefore, the
diagonal class [∆ĪµrX

] obtained via push-forward of the fundamental class by (id, ι) : ĪµrX →
ĪµrX × ĪµrX can be written as

∞∑
r=1

r[∆ĪµrX
] =

∑
α

φα ⊗ φα in H∗(ĪµX × ĪµX,Q),

where {φα} is a basis of H∗CR,T (X,Q) with {φα} the dual basis with respect to the Poincaré
pairing defined above.

denote by ψ̄i the first Chern class of the universal cotangent line whose fiber at ((C, q1, ..., qm), [x])
is the cotangent space of the coarse moduli C of C at i-th marking q

i
. For non-negative integers

ai and classes αi ∈ H∗T (ĪµX,Q), δj ∈ H∗(X,Q), we write

〈α1ψ̄
a1 , ..., αmψ̄

am ; δ1, · · · , δl〉θ
′,ε

0,m,β :=

∫
[Qθ
′,ε

0,m|p(X,β)]vir

∏
i

ev∗i (αi)ψ̄
ai
i

∏
j

êv∗j (δj) .

When ε is empty, θ′ = εθ for sufficiently large rational number ε, the above formula recovers
the usual Gromov-Witten invariants, in which case, we will write this as

〈α1ψ̄
a1 , ..., αmψ̄

am〉 .
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We will also need the quasimap Chen-Ruan classes

(2.2) (ẽvj)∗ = ι∗(rj(evj)∗),

where rj is the order function of the band of the gerbe structure at the marking qj . Define a
class in HT

∗ (ĪµX) ∼= H∗T (ĪµX) by

〈α1, ..., αm,−〉ε0,β := (ẽvm+1)∗

(
(
∏

ev∗i αi) ∩ [Qε0,m(X,β)]vir
)

=
∑
α

φα〈α1, ..., αm, φα〉ε0,m+1,β .

3. Geometry of complete intersections in toric Deligne-Mumford stacks

From now on, we will fix a GIT data (W = Cn, G = (C∗)k, θ), which represents a proper
toric Deligne-Mumford stack (or toric stack in short) X := [W ss(θ)/G] as in example 2.6. We
will also fix a vector bundle E over X := [W/G] which is a direct sum of line bundles ⊕cb=1Lτb
associated to characters (τb)

c
b=1 of G. Let sb ∈ Γ(W,W×Cτb)G be sections such that they cut off

an irreducible complete intersection in W which is smooth in W ss := W ss(θ). denote by AY the
zero loci of the section s := ⊕cb=1sb and by AY ss = AY ss(θ) the corresponding semistable loci,
then (AY,G, θ) determines a GIT quotient Y := [AY ss(θ)/G], which is a complete intersection
in X. We will denote Y := [AY/G] to be the quotient stack corresponding to Y . Note that
AY ss is equal to the intersection of W ss and AY .

It’s well known the rigidified inertia stacks of Y and X are

ĪµY =
⊔
g∈G

[AY ss(θ)g/(G/〈g〉)], ĪµX =
⊔
g∈G

[W ss(θ)g/(G/〈g〉)] .

For each g ∈ G, denote by ĪgY := [AY ss(θ)g/(G/〈g〉)] and ĪgX := [W ss(θ)g/(G/〈g〉)] the
rigidified inertia components of X and Y respectively. We note that here that ĪgY or ĪgX is
nonempty only if g is torsion as Y (and X) are Deligne-Mumford stacks.

To describe the relationship between ĪµX and ĪµY , we will need the following lemma:

Lemma 3.1. For any torsion element g ∈ G, the inclusion of g−fixed subspaces AY ss(θ)g ⊂
W ss(θ)g is a complete intersection with respect to the sections {sb|b : τb(g) = 1}.

Proof. For any point p ∈W ss(θ)g such that s vanishes on p, we have the following short exact
sequence of tangent spaces

0→ TpAY
ss(θ)→ TpW

ss(θ)→ ⊕cb=1Cτb → 0 ,

which is also exact as representations of the finite group generated by g. Taking the g-invariant
subspace of the above exact sequence, we get

0→ TpAY
ss(θ)g → TpW

ss(θ)g → ⊕b:τb(g)=1Cτb → 0 ,

which imply the lemma. �

For any degree β ∈ Eff(W,G, θ), we will define an element gβ ∈ G, and two special sub-
varieties Y ssβ ⊂ AY ss, Zssβ ⊂W ss needed in the statement of the mirror theorem:

gβ := (e2π
√
−1β(Lπ1 ), · · · , e2π

√
−1β(Lπk )) ∈ G = (C∗)k ,

Y ssβ := (AY ss)gβ ∩ {(xi) ∈W |xi = 0 ∀i : β(Lρi) ∈ Z<0} ,
Zssβ := (W ss)gβ ∩ {(xi) ∈W |xi = 0 ∀i : β(Lρi) ∈ Z<0} .

In the end of this section, we will prove a lemma 3.2 relating the geometry of Y ssβ and Zssβ .

The geometrical significance of introducing Y ssβ and Zssβ is that the quotient stacks [Y ssβ /G]

and [Zssβ /G] describe important classes in the stacky loop spaces for X and Y which we now
describe.
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First of all, let’s recall the definition of stacky loop space into the toric stack X (c.f.
[CCFK15]). Set U = C2\{0}, for any positive integer a, denote Pa,1 to be the quotient stack
[U/C∗] defined by the C∗-action on U with weights [a, 1] so that 0 := [0 : 1] is a non-stacky
point and ∞ := [1 : 0] ∼= Bµa is a stacky point. The stacky loop space into X

QPa,1(X,β) ⊂ Homrep
β (Pa,1,X)

is defined to be the moduli stack of representable morphisms from Pa,1 to X of degree β such that
the generic point of Pa,1 is mapped into X. By [CCFK15, Lemma 4.6], for such a representable
morphism to exist, a must be the order of the finite cyclic group generated by gβ . We note
that a is also the minimal positive integer making aβ(Lτ ) an integer for all character τ of G.
We can define the stacky loop space into Y in a similar manner, denote

QPa,1(Y, β) ⊂ Homrep
β (Pa,1,Y)

by the moduli stack of representable morphisms from Pa,1 to Y of degree β such that the generic
point of Pa,1 is mapped into Y .

Let a be the integer associated to gβ . Let C[z1, z2] be the polynomial ring on variables z1

and z2 with weights a and 1 respectively. Consider the finite dimensional vector space

Wβ :=
⊕
ρ∈[n]

C[z1, z2]aβ(Lρ)

with the G-action given by the direct sum of the diagonal G-actions where G on acts on the
component C[z1, z2]aβ(Lρ) by the character ρ, then C[z1, z2]aβ(Lρ)

∼=
⊕

Cρ. Given any element
of Wβ , we can naturally associate a morphism from Pa,1 to X of degree β. Then we have the
equivalence of the following two stacks:

Homrep
β (Pa,1,X) ∼= [Wβ/G] ,

under which correspondence, we have

QPa,1(X,β) ∼= [W ss
β (θ)/G] .

Consider the C∗−action on Pa,1 defined by

t(ζ1, ζ2) = (tζ1, ζ2) ,

for all (ζ1, ζ2) ∈ U and t ∈ C∗. This induces a C∗−action on QPa,1(X,β) as well as on
QPa,1(Y, β). Denote Fβ(X) (resp. Fβ(Y )) to be the subspace of QPa,1(X,β)(resp. QPa,1(Y, β))
which consists of representable morphisms f : Pa,1 → X (resp. f : Pa,1 → Y) with [0 :1] as the
only base point. More explicitly, Fβ(X) (resp. Fβ(Y )) is comprised of the morphisms in the
form

f : Pa,1 → X (resp. Y), (ζ1, ζ2) 7→ (aρζ
β(Lρ)
1 )ρ∈[n] ,

where the coefficients (aρ) satisfy that (aρz
β(Lρ)
1 : ρ ∈ [n]) ∈W ss

β (θ). Note that for such a map

to be well-defined, aρ must be 0 when β(Lρ) /∈ Z>0.
We can see that Fβ(X) is a component of the C∗−fixed loci of QPa,1(X,β), which we can

describe more explicitly as follows. Define

Zβ :=
⊕

ρ∈[n],β(Lρ)∈Z>0

C · zβ(Lρ)
1 ⊂Wβ .

We have Zssβ
∼= Zβ ∩W ss

β (θ), and

Fβ(X) ∼= [Zssβ /G], and Fβ(Y ) ∼= [Y ssβ /G] .

It’s clear that Y ssβ is cut off by the sections {sb|b : β(Lτb) ∈ Z} on Zssβ , but this may not be
a complete intersection. Indeed, one can show the following.
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Lemma 3.2. For any b such that β(Lτb) ∈ Z<0, the section sb vanishes on Zssβ . Thus Y ssβ is

merely the vanishing loci of sections {sb|b : β(Lτb) ∈ Z>0} in Zssβ .

Proof. For b with β(Lτb) ∈ Z60, for any point ~x = (aρ)ρ∈[n] ∈ Zssβ , the corresponding morphism

in Fβ(X) is in the form

[~x] : Pa,1 → X : [ζ1, ζ2]→ (aρζ
β(Lρ)
1 )ρ∈[n] .

Then the pullback of section sb to Pa,1 becomes sb(~x)z
β(Lτb )

1 . However as the pull-back line
bundle [~x]∗Lτb is of degree β(Lτb) < 0 on Pa,1, hence there is no nonzero section in the line
bundle [~x]∗L, which implies that sb(~x) = 0. Now the lemma follows. �

Definition 3.3. Denote Eβ := ⊕b:β(Lτb )∈Z>0
Lτb and sβ = ⊕b:β(Lτb )∈Z>0

sb. We will also use

the notations Eβ and sβ to mean the vector bundle and the section for [Zssβ /(G/〈g
−1
β 〉)] by

descent. Using the above lemma, we have the following Cartesian diagram

[Y ssβ /(G/〈g−1
β 〉)]

i

��

i // [Zssβ /(G/〈g
−1
β 〉)]

sβ

��
[Zssβ /(G/〈g

−1
β 〉)]

0 // Eβ ,

where the bottom arrow is the zero section, i : [Y ssβ /(G/〈g−1
β 〉)] → [Zssβ /(G/〈g

−1
β 〉)] is the

inclusion.
Then we have a Gysin pullback 0! : A∗([Z

ss
β /(G/〈g

−1
β 〉)]) → A∗([Y

ss
β /(G/〈g−1

β 〉)]) , which is

also denoted by s!
Eβ ,loc

known as the localized top Chern class [Ful84, §14.1] with respect to the

vector bundle Eβ over [Zssβ /(G/〈g
−1
β 〉)] and the section sβ.

Let i : [Y ssβ /(G/〈g−1
β 〉)]→ Īg−1

β
Y be the natural inclusion. Now we discuss two implications

of the above lemma:

Corollary 3.4. We have the following:

(1) If the set {b | β(Lτb) ∈ Z} is exactly the set {b | β(Lτb) ∈ Z>0}, then we have

i∗(s
!
Eβ ,loc([Zssβ /(G/〈g−1

β 〉)])) = (
∏

ρ:β(Lρ)∈Z60

Dρ) · 1g−1
β

in A∗(Īg−1
β
Y ), where 1g−1

β
is the fundamental class of Īg−1

β
Y , Dρ = c1(Lρ) is the class

of the hyperplane given by xρ = 0.
(2) If the set {b | β(Lτb) ∈ Z} is empty, then we have Y ssβ = Zssβ , and Īg−1

β
Y = Īg−1

β
X, and

s!
Eβ ,loc is the identity morphism. Thus

i∗(s
!
Eβ ,loc([Zssβ /(G/〈g−1

β 〉)])) = (
∏

ρ:β(Lρ)∈Z60

Dρ) · 1g−1
β

in A∗(Īg−1
β
Y ).
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Recall that the twisted I-function [CCIT19] for toric stack X with respect to the vector
bundle ⊕bLτb is

ItwX =
∑

β∈Eff(W,G,θ)

qβexp
(1

z

n∑
i=1

ti(c1(Lρi) + β(Lρi)z)
)

∏
ρ:β(Lρ)<0

∏
β(Lρ)6i<0(Dρ + (β(Lρ)− i)z)∏

ρ:β(Lρ)>0

∏
06i<β(Lρ)(Dρ + (β(Lρ)− i)z)

·

∏
b:β(Lτb )>0

∏
i:06i<β(Lτb )(κ+ c1(Lτb) + (β(Lτb)− i)z)∏

b:β(Lτb )<0

∏
i:β(Lτb )6i<0(κ+ c1(Lτb) + (β(Lτb)− i)z)

1g−1
β

.

Here we discard the factor z of the twisted I-funtion in [CCIT19].
We have the following relation between our big I-function and the twisted I-function.

Corollary 3.5. Expand the twisted I-function ItwX in Novikov variables

ItwX =
∑
β

qβIβ,twX .

Note that Iβ,twX belongs to H∗(Īg−1
β
X)[z−1, z][[t1, · · · , tn]]. Define ItwX

∏
b

(
κ+ c1(Lτb)

)
to be

∑
β

qβIβ,twX

∏
b:β(Lτb )∈Z

(
κ+ c1(Lτb)

)
.

Note that
∏
b:β(Lτb )∈Z c1(Lτb) is the Euler class of the normal bundle of inertia component

Īg−1
β
Y in Īg−1

β
X. Then ItwX

∏
b

(
κ + c1(Lτb)

)
has a limit as κ goes to zero, and it’s equal to

push-forward ι∗I(q, t, z)|
ui

(
c1(Lπj )

)
=c1(Lρi )

along the inclusion ι : ĪµY → ĪµX.

Proof. Using the fact(c.f. Corollary 3.4)

ι∗
(
i∗(s

!
Eβ ,loc

([Zssβ /(G/〈g−1
β 〉)]))

)
= 1g−1

β
·

∏
b:β(Lτb )∈Z>0

c1(Lτb) ·
∏

ρ:β(Lρ)∈Z<0

c1(Lρ) .

�

3.1. Two special cases of the mirror theorem. Using corollary 3.4, we consider two inter-
esting special cases of the I-function. The first case is when Y is a hypersurface with respect
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to a line bundle L := Lτ for some character τ , the mirror formula (1.1) becomes:

I(q, t, z) =
∑

β∈Eff(W,G,θ)
β(L)>0

qβexp ·
∏
ρ:β(Lρ)<0

∏
β(Lρ)6i<0(Dρ + (β(Lρ)− i)z)∏

ρ:β(Lρ)>0

∏
06i<β(Lρ)(Dρ + (β(Lρ)− i)z)

×
∏

06i<β(L)

(
c1(L) + (β(L)− i)z

)
1g−1

β

+
∑

β∈Eff(W,G,θ)
β(L)∈Z<0

qβexp ·
∏
ρ:β(Lρ)<0

∏
β(Lρ)<i<0(Dρ + (β(Lρ)− i)z)∏

ρ:β(Lρ)>0

∏
06i<β(Lρ)(Dρ + (β(Lρ)− i)z)

×
∏

β(L)<i<0

1(
c1(L) + (β(L)− i)z

)[[Y ssβ /(G/〈g−1
β 〉)]

]
+

∑
β∈Eff(W,G,θ)
β(L)∈Q<0\Z<0

qβexp ·
∏
ρ:β(Lρ)<0

∏
β(Lρ)6i<0(Dρ + (β(Lρ)− i)z)∏

ρ:β(Lρ)>0

∏
06i<β(Lρ)(Dρ + (β(Lρ)− i)z)

×
∏

β(L)<i<0

1(
c1(L) + (β(L)− i)z

)1g−1
β

.

(3.1)

Here exp is short for exp
(

1
z

∑l
i=1 tiui(c1(Lπj ) + β(Lπj )z)

)
and

[
[Y ssβ /(G/〈g−1

β 〉)]
]

is the funda-

mental class of [Y ssβ /(G/〈g−1
β 〉)] in H∗(Īg−1

β
Y ).

Remark 3.6. The reader may wonder whether we can express the cohomology class
[
[Y ssβ /(G/〈g−1

β 〉)]
]

as the product of 1g−1
β

and Dρ like in other cases. Note that this will in particular imply that[
[Y ssβ /(G/〈g−1

β 〉)]
]

is an ambient cohomology, i.e. a cohomology class pulled back from the

Chen-Ruan cohomology H∗(ĪµX) of the ambient toric stack. However
[
[Y ssβ /(G/〈g−1

β 〉)]
]

is

not an ambient cohomology class in general. For example, take X = P3, Y is quadratic hyper-
surface of X. We will choose a GIT presentation of X and degree β such that

[
[Y ssβ /(G/〈g−1

β 〉)]
]

can be the line {[0, ∗, ∗, 0] ∈ P3}. To achieve this, we choose a non-standard GIT presentation
of P3: Let W = C5, G = (C∗)2 so that G acts on W via the right action

(x1, x2, x3, x4, x5) · (t1, t2) = (t1x1, t1t2x2, t1t2x3, t1x4, t2x5) ,

where (x1, x2, x3, x4, x5) ∈ W and (t1, t2) ∈ G. If we choose the stablity condition θ(t1, t2) =
t1t

2
2 ∈ χ(G), we have W ss(θ) = (C4\{0})× C∗, let Y be the quadratic hypersurface cut off by

the polynomial x1x2 − x3x4 and we choose degree β ∈ Eff(W,G, θ) defined by β(Lt1) = −1
and β(Lt2) = 1. It’s a very interesting question to use this to calculate the GW invariants with
insertion of non-ambient cohomology classes and we will explain how to do it elsewhere.

The second case is when all the line bundles Lτb are all semi-positive, i.e. β(Lτb) > 0 for all
β ∈ Eff(W,G, θ) and b. Then the I-function specializes to:

I(q, t, z) =
∑

β∈Eff(W,G,θ)

qβexp
(1

z

l∑
i=1

tiui(c1(Lπj ) + β(Lπj )z)
)

∏
ρ:β(Lρ)<0

∏
β(Lρ)6i<0(Dρ + (β(Lρ)− i)z)∏

ρ:β(Lρ)>0

∏
06i<β(Lρ)(Dρ + (β(Lρ)− i)z)

×
∏
b

∏
06i<β(Lτb )

(
c1(Lτb) + (β(Lτb)− i)z

)
1g−1

β
.

(3.2)
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The above formulae match the formula for positive hypersurfaces in toric stacks for which the
convexity holds [CCIT15, §5] and the formula for a ray divisor (given by a coordinate function
corresponding to the ray) of a toric stack for which the convexity may fail [CCIT15,CCFK15].
See §7 for a non-positive example where the convexity fails.

4. Master space I

4.1. Construction of master space I. In this section, we will construct a master space which
is a root stack modification of the twisted graph space considered in [CJR17a]. Let (AY,G, θ)
be the GIT data which gives rise to a complete intersection in the toric stack X = [W ss(θ)/G]
as in previous sections. Since a positive rational scaling of the stability character θ will not
change the GIT quotient. Without loss of generality, let’s assume that the line bundle Lθ on
Y = [AY ss(θ)/G] is the pullback of a positive line bundle on the coarse moduli space Y of Y .
First we will consider the following quotient stack

PY
1
r ,p = [(AY ×Cp×C2)/(G×(C∗)p×C∗)]

defined by the following (right) action

(~x, ~y, z1, z2) · (g, h, t) = (~x · g, (hjyj)pj=1, θ(g)−1(

p∏
j=1

h−1
j )trz1, tz2) ,

where (g, h = (hj)
p
j=1, t) ∈ G×(C∗)p×C∗ (~x, ~y = (yj)

p
j=1, z1, z2) ∈ AY ×Cp×C2. For simplicity,

we will write AYp := AY ×Cp, and Gp := G×(C∗)p. Let θp be the character of Gp defined by

θp(g, h) = θ(g)

p∏
j=1

hj for all (g, h) ∈ Gp .

Fix a positive rational number ε ∈ Q>0 ∩ (0, 1] and a tuple of positive rational numbers
ε = (ε, · · · , ε) ∈ (Q>0)p, we consider the stability given by the rational character of Gp×C∗
defined by

θ̃(g, h, t) = θp(g, h)εt3r

for (g, h, t) ∈ Gp×C∗. Then the GIT stack quotient [(AYp×C2)ss(θ̃)/(Gp×C∗)] is the root stack
of the P1−bundle PY (O(−Dθ)⊕O) over Y by taking r-th root of the infinity divisor D∞ given

by z2 = 0. We will denote the GIT stack quotient [(AYp×C2)ss(θ̃)/(Gp×C∗)] to be PY 1
r , which

is equipped with the infinity section D∞ given by z2 = 0 and the zero section D0 given by
z1 = 0. Note that this GIT quotient is independent of the integer p as the semistable(=stable)

loci (AYp×C2)ss(θ̃) = AY ss(θ)×(C∗)p×(C2\{0}). We will take p = 0 as our standard GIT

quotient reference for PY 1
r , which will be canonically identified with other GIT quotients from

PY 1
r ,p by choosing the embedding AY ⊂ AYp as AY ∼= AYp ∩ {yi = 1|i = 1, . . . , p}.

When the integer r is prime to the orders of isotropy groups of all points for X, which
happens, in particular, as r is a sufficiently large prime, the rigidified inertia stack ĪµPY

1
r of

PY 1
r can be composed as the disjoint union

P(ĪµY )
1
r︸ ︷︷ ︸

1

⊔
tr−1
j=1 ĪµY︸ ︷︷ ︸

2

.

Let (~x, (g, t)) represents a C−point of ĪµPY
1
r , if (~x, (g, t)) appears in the first factor of the

decomposition above, then the element (g, t) in the subgroup G×{1} ⊂ G×C∗, and the space

P(ĪµY )
1
r can be further decomposed as P(ĪµY )

1
r = tg∈GP(ĪgY )

1
r , where P(ĪgY )

1
r is defined as

the quotient stack

P(ĪgY )
1
r := [(AY (θ̃)g×(C\{0})2)/((G/〈g〉)×C∗)]
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with the action similar to PY 1
r ,0 as above; if (~x, (g, t)) occurs in the second factor of the

decomposition above, the automorphism (g, t) lies in G×{µjr : 1 6 j 6 r − 1} ⊂ G×µr, and

the point ~x goes the infinity section D∞ defined by z2 = 0. Here µr = exp( 2π
√
−1
r ) ∈ C∗ and

µr is the cyclic group generated by µr.

For (g, t) ∈ G×µr. we will use the notation Ī(g,t)PY
1
r to mean the rigidified inertia stack

component of ĪµPY
1
r corresponding to the isotropy element (g, t).

Consider the moduli stack of θ̃−stable quasimaps to PY 1
r ,p:

Qθ̃0,m(PY
1
r ,p, (d, 1p,

δ

r
)) .

More concretely,

Qθ̃0,m(PY
1
r ,p, (d, 1p,

δ

r
)) = {(C; q1, . . . , qm;L1, · · · , Lk+p, N ; ~x, ~y, z1, z2)},

where (C; q1, . . . , qm) is a m-pointed prestable balanced orbifold curve of genus 0 with possible
nontrivial isotropy only at special points, i.e. marked gerbes or nodes, the line bundles (Lj :
1 6 j 6 k + p) and N are orbifold line bundles on C with

(4.1) deg([~x]) = d ∈ Hom(Pic(Y),Q), deg(N) =
δ

r
,

(4.2) deg(Lk+j) = 1, 1 6 j 6 p ,

and

(~x, ~y, ~z) := (x1, . . . , xn, y1, . . . , yp, z1, z2) ∈ Γ

 n⊕
i=1

Lρi ⊕
p⊕
j=1

Lk+j ⊕ (L−θp ⊗N⊗r)⊕N

 .

Here, for 1 6 i 6 n, the line bundle Lρi is equal to

⊗kj=1L
mij
j ,

where (mij) (1 6 i 6 n,1 6 j 6 k + p) is given by the relation ρi =
∑k
j=1mijπj . The

same construction applies to the line bundle L−θp on C. Note that here δ is an integer when

Qθ̃0,m(PY 1
r ,p, (d, 1p, δr )) is nonempty as N⊗r is the pull-back of some line bundle on the coarse

moduli curve C.
We require the the following conditions are satisfied for the above data:

• Representability: For every q ∈ C with isotropy group Gq, the homomorphism BGq →
B(Gp × C∗) induced by the restriction of line bundles (Lj : 1 6 j 6 k + p) and N
to q is representable. Note that the image of the homomorphism lies in the subgroup
G×C∗ ⊂ Gp×C∗.
• Nondegeneracy: The sections z1 and z2 never simultaneously vanish. Furthermore, for

each point q of C at which z2(q) 6= 0, the stability condition 2.3

lθ̃(q) 6 1

for θ̃-stable map to PY 1
r ,p becomes the stability condition

(4.3) lεθp(q) 6 1,

for the prestable quasimap [~x, ~y] : C → Y× [C/C∗]p. For each point q of C at which
z2(q) = 0, we have

(4.4) ordq(~x) = ordq(~y) = 0.

We note that this can be phrased as the length condition (2.1) bounding the order of

contact of (~x, ~y, ~z) with the unstable loci of PY 1
r ,p as in [CFK16, §2.1].
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• Stability: The Q−line bundle

(φ∗(Lθ))
⊗ε ⊗

p⊗
j=1

φ∗(Lk+j)
⊗ε ⊗ φ∗(N⊗3r)⊗ ωlogC

on the coarse curve C is ample. Here φ : C → C is the coarse moduli map. Note that
here, the line bundles Lθ, (Lk+j)

p
j=1 and N⊗3r are the pullback of line bundles on the

coarse moduli of C.
• Vanishing: The image of [~x] : C → X lies in Y.

Let ~m = (v1, · · · , vm) ∈ (G×µr)m, we will denote Qθ̃0,~m(PY 1
r ,p, (d, 1p, δr )) to be:

Qθ̃0,m(PY
1
r ,p, (d, 1p,

δ

r
)) ∩ ev−1

1 (Īv1
PY

1
r ) ∩ · · · ∩ ev−1

m (ĪvmPY
1
r ) ,

where

evi : Qθ̃0,~m(PY
1
r ,p, (β, 1p,

δ

r
))→ ĪµPY

1
r

are natural evaluation maps as before, by evaluating the sections (~x, ~z) at ith marking qi.
Evaluating the section ~x at the vanishing loci of the section yj of the degree one line bundle
Lk+j for 1 6 j 6 p, which corresponds to a smooth non-orbifold point on C, one has another
tuple of evaluation maps

(4.5) êvj : Qθ̃0,~m(PY
1
r ,p, (β, 1p,

δ

r
))→ Y ,

for 1 6 j 6 p.

Remark 4.1. The above constructed master space is inspired by the twisted graph space used
in [CJR17b,CJR17a], which they use to prove the high genus quasimap wall-crossing assuming
the genus zero wall-crossing for quasimap J−function holds. So it may be surprising that
certain modification of the twisted graph space can be used to prove the genus zero quasimap
wall-crossing in this paper.

Because Qθ̃0,~m(PY 1
r ,p, (β, 1p, δr )) is the moduli space of stable quasimaps to a proper lci GIT

quotient, it is a proper Deligne-Mumford stack equipped with a natural perfect obstruction
theory relative to the Artin stack Mtw

0,m of prestable twisted curves by [CFKM14]. This relative
perfect obstruction theory has the form

(4.6) E := R•π∗(f
∗T

PY
1
r
,p) .

Here, we denote the universal family over Qθ̃0,~m(PY 1
r ,p, (β, 1p, δr )) by

C

π

��

f // PY 1
r ,p

Qθ̃0,~m(PY 1
r ,p, (β, 1p, δr )) .

The obstruction theory (4.6) can written as cone of the morphism of complexes

(4.7) R•π∗(OC ⊗ gp)→ R•π∗
(
V ⊕ (⊕pj=1Lk+j)⊕ (L−θp ⊗N⊗r)⊕N

)
,

which is induced from applying R•π∗ to the Euler exact sequence of the tangent complex T
PY

1
r
,p

of PY 1
r ,p

AYr,p ×Gp gp → AYr,p ×Gp TAYr,p → T
PY

1
r
,p .
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Here we use the GIT representation PY 1
r ,p = [AYr,p/Gp] constructed before, where8 AYr,p =

AY ×Cp ×C2. Here Lρi (1 6 i 6 n), Lj (1 6 j 6 k) and N are the universal line bundles and

V ⊂ ⊕ni=1Lρi
is the subsheaf of sections taking values in the affine cone of Y . Somewhat more explicitly, the
sub-obstruction-theory Erel := R•π∗(V) comes from the deformations and obstructions of the
sections ~x, and Erel fits into the following distinguished triangle:

(4.8) Erel
// R•π∗(⊕ni=1Lρi)

ds // R•π∗(⊕cb=1Lτb)
+1 // .

Here ds = ⊕cb=1dsb where dsb : R•π∗(⊕ni=1Lρi)→ R•π∗Lτb is included from the vector bundle
map

⊕ni=1Lρi → Lτb
which sends ~x = (xi)

n
i=1 to sb(~x). We note that we can interpret R•π∗(OC ⊗ gp) as the defor-

mation theory of line bundles (Lj)
k+p
j=1 and N , and interpret the summand R•π∗

(
(⊕pj=1Lk+j)⊕

(L−θp ⊗N⊗r)⊕N
)

of E as the deformation theory of sections ~y and z1, z2.

4.2. C∗-action and fixed loci. Consider the (left) C∗-action on AYp×C2 defined by:

λ(~x, ~y, z1, z2) = (~x, ~y, λz1, z2) ,

this action descents to be an action on PY 1
r ,p. We will denote λ to be the equivariant class

corresponding to the C∗-action of weight 1. Let’s first state a criteria for a morphism to PY 1
r ,p

to be C∗-equivariant (see also [CLLL16, §2.2]), which will be important in the analysis of
localization computations.

Remark 4.2. (Equivariant morphism to PY 1
r ,p) Fix a stack S over Spec(C) with a left C∗-

action, then a C∗-equivariant morphism from S to PY 1
r ,p is equivalent to the following data:

there exists k + p+ 1 C∗-equivariant line bundles on S

L1, · · · , Lk+p, N

together with C∗-invariant sections

(~x, ~y, ~z) := (x1, . . . , xn, yn+1, . . . , yn+p, z1, z2)

∈ Γ
(
⊕ni=1Lρi ⊕ (⊕pj=1Lk+j)⊕ (L−θp ⊗N⊗r ⊗ Cλ)⊕N

)C∗
.

Here Lρi (1 6 i 6 n) and L−θp are constructed from (Lj)16j6k+p as explained before, Cλ is
the trivial line bundle over S with C∗−linearization of weight 1. These sections should also
satisfy the vanishing condition imposed by the cone of Y as above.

Fix a degree β ∈ Eff(W,G, θ) and a tuple of nonnegative integers (δ1, · · · , δm) ∈ Nm. Con-
sider the tuple of multiplicities ~m = (v1, · · · , vm) ∈ (G×µr)m, where vi = (gi, µ

δi
r ), we will

denote Qθ̃0,~m(PY 1
r ,p, (β, δr )) to be⊔

d∈Eff(AY,G,θ)
(iY)∗(d)=β

Qθ̃0,~m(PY
1
r ,p, (d, 1p,

δ

r
)) ,

where iY : Y→ X is the inclusion morphism. Thus Qθ̃0,~m(PY 1
r ,p, (β, 1p, δr )) inherits a C∗-action

from the C∗−action on PY 1
r ,p.

We can index the components of C∗−fixed loci of Qθ̃0,~m(PY 1
r ,p, (β, 1p, δr )) by decorated

graphs. A decorated graph Γ consists of vertices, edges, and m legs, and we decorate it as
follows:

8We add the subscript r here to emphasis that the Gp−action on AYr,p depends on r.
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• Each vertex v is associated with an index j(v) ∈ {0,∞}, a degree β(v) ∈ Eff(W,G, θ)
and a subset Jv ⊂ {1, · · · , p}.
• Each edge e = {h, h′} consists of a pair of half edges and it is equipped with a degree
β(e) ∈ Eff(W,G, θ), a subset Je ⊂ {1, · · · , p} and δ(e) ∈ Z>0. Each half edge h (or h′)
is incident to a unique vertex.
• Each half-edge h and each leg l has an element (called multiplicity) m(h) or m(l) in
G×µr.
• The legs are labeled with the numbers {1, . . . ,m}, and each leg is incident to a unique

vertex.

By the “valence” of a vertex v, denoted val(v), we mean the total number of incident half-edges,
including legs.

For each C∗−fixed stable map f in Qθ̃0,~m(PY 1
r ,p, (β, 1p, δr )), we can associate a decorated

graph Γ in the following way.

• Each edge e corresponds to a genus-zero component Ce of C such that it maps constantly

to the base Y with possible basepoints on Ce. We also require that deg(N |Ce) = δ(e)
r ,

deg(Lj |Ce) = β(e)(Lπj ) (1 6 j 6 k), and deg(Lk+j |Ce) = 1 if and only if j ∈ Je and 0

otherwise. We denote 1Je to be the degree coming from the lines bundles (Lk+j : 1 6
j 6 p). There are two distinguished points q0 and q∞ on Ce such that q∞ is the only
point on Ce at which z2 vanishes, and q0 is the only point on Ce determined by the
following conditions:

– if Ce has base points, q0 is the only base point on Ce;
– if Ce does not have base points on it, q0 is the only point on Ce at which z1

vanishes.
We will also call q0, q∞ the ramification points9, and all of degree (β(e), 1Je) is concen-
trated at the ramification point q0. That is,

when xi|Ce 6= 0, we have ordq0(xi) = β(e)(Lρi), and ordq0(yi) = 1 if j ∈ Je .

• Each vertex v for which j(v) = 0 (with unstable exceptional cases note thatd below)
corresponds to a maximal sub-curve Cv of C over which z1 ≡ 0, and each vertex v for
which j(v) =∞ (again with unstable exceptions) corresponds to a maximal sub-curve
over which z2 ≡ 0. The label β(v) denotes the degree coming from the restriction map
[~x]|Cv , note that here we count the degree β(v) in Eff(W,G, θ), but not in Eff(AY,G, θ).
The subset Jv is equal to the set {j|deg(Lk+j |Cv ) = 1, 1 6 j 6 p}. We denote 1Jv to
be the ordered tuple (deg(Lk+j |Cv ))pj=1.
• A vertex v is unstable if stable quasimap of the type described above do not exist

(where, as always, we interpret legs as marked points and half-edges as half-nodes). In
this case, v corresponds to a single point of the component Ce for each adjacent edge
e, which may be a node at which Ce meets another edge curve Ce′ , a marked point of
Ce, an unmarked point, or a basepoint on Ce of order β(v). Note that the base point
only appears as a vertex v over 0 due to the nondegeneracy condition, in which case
we have β(v) = β(e) for the incident edge e to v.

• The index m(l) on a leg l indicates the rigidified inertia stack component Īm(l)PY
1
r

of PY 1
r on which the marked point corresponding to the leg l is evaluated, this is

determined by the multiplicity of L1, · · · , Lk, N at the corresponding marked point.

9The definition of the ramification point here is different from the definition in [CJR17a, Page 13], where

they claim that z1 or z2 each vanish at exactly one point on Ce. We find that there is a missing case when
q0 is a base point and deg(L1|Ce ) = degL2|Ce = δ(e) in their setting, then z1|Ce ≡ 1, which does not vanish

anywhere on Ce. But the author finds this missing case does not affect their main result in [CJR17a].
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• A half-edge h of an edge e corresponds a ramification point q ∈ Ce. If q is not a base
point, then m(h) indicates the rigidified inertia component Īm(h)PY

1
r of PY 1

r on which
the ramification point q associated with h is evaluated. If q is a base point, we take
m(h) = (1, 1) ∈ G×µr.

In particular, we note that the decorations at each stable vertex v yield a tuple

~m(v) ∈ (G× µr)val(v)

recording the multiplicities of L1, · · · , Lk, N at every special point of Cv.
10 We have the fol-

lowing remarks:

Remark 4.3. The crucial observation, now, is the following. For a stable vertex v such that
j(v) = 0, we have z1|Cv ≡ 0, so the stability condition (4.3) implies that lεθp(q) 6 1 for
each q ∈ Cv. That is, the restriction of (C; q1, . . . , qm;L1, · · · , Lk+p; ~x, ~y) to Cv gives rise to a
εθp-stable quasimap to the quotient stack Yp := [AY/G]× [C/C∗]p (c.f. 2.7) in

Q
εθp
0,~m(v)(Yp, (β(v), 1Jv )) :=

⊔
d∈Eff(AY,G,θ)
(iY)∗(d)=β(v)

Q
εθp
0,~m(v)(Yp, (d, 1

Jv )) .

In this case, let j ∈ Jv, the evaluation map considered in (4.5) coincides with êvj forQ
(εθ,ε|Jv|)
0,~m(v)| |Jv|(Y, β(v))

in Remark 2.8.11 On the other hand, for a stable vertex v such that j(v) =∞, we have z2|Cv ≡ 0,
so the stability condition (4.4) implies that ordq(~x) = ordq(~y) = 0 for each q ∈ Cv. Thus, the
restriction of (C; q1, . . . , qm;L1, · · · , Lk; ~x) to Cv gives rise to a usual twisted stable map in

K0,~m(v)(
r
√
Lθ/Y , β(v)) :=

⊔
d∈Eff(AY,G,θ)
(iY)∗(d)=β(v)

K0,~m(v)(
r
√
Lθ/Y , d) .

Here r
√
Lθ/Y is the root gerbe of Y by taking r-th root of Lθ.

Remark 4.4. For each edge e, the restriction of (~x, ~y) to Ce defines a constant map to Y
(possibly with an additional basepoint at the ramification point q0). So if there is no basepoint
on Ce, the restriction of (~x, ~y, ~z) to Ce defines a representable map

Ce → BGy × Pr,1
where y ∈ Y comes from ~x, Gy is the isotropy group of y ∈ Y . Then we have m(q0) = (g−1, 1)

and m(q∞) = (g, µ
δ(e)
r ) for some g ∈ Gy. Note that when r is a sufficiently large prime

comparing to δ(e), assuming that the order of g is equal to a, we have Ce ∼= P1
ar,a and the

ramification point q∞ must be a special point. Here P1
ar,a is the unique Deligne-Mumford stack

with coarse moduli P1 with isotropy group µa at 0 ∈ P1, isotropy group µar at ∞ ∈ P1, and
generic trivial stabilizer.

If q0 is a basepoint of degree (β, 1Je) (we write β = β(e) for short), the ramification point q0

can’t be an orbifold point, thus m(q0) = (1, 1) ∈ G×µr. When r is a sufficiently large prime.

Assume m(q∞) = (g, µ
δ(e)
r ), and a is the order of g, by the representable condition, we have

Ce ∼= Par,1. Note that the restriction of (~x, ~y) to Ce defines an element in the space F(β,1Je )(Y )

of the stacky loop space QPa,1(Y, (β, 1Je)) (see §3). Then the restriction of (~x, ~y, ~z) to Ce defines
a quasimap f which can be explicitly described as follows. Write Pa,1 as the quotient stack

10For each node, let h be the incident half-edge and v be the incident vertex, then we define the multiplicity

at the branch of the node at Cv to be m(h)−1.
11Here we use a canonical bijection between the set [|Jv |] := {1, · · · , |Jv |} and the index set Jv using the

natural order of elements in Jv ⊂ [p].
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[U/C∗] where U := C2 \ {0} and C∗ acts on U with weights [ar, 1]. We define a map F from U
to AYp×U to be

(x, y) ∈ U 7→((
x1x

β(Lρ1 ), · · · , xnxβ(Lρn )
)
, (x)j∈Je , x

δ(e)−β(Lθ)−|Je|, yaδ(e)
)
∈ AYp×U .

Here (x)j∈Je is an element belonging to Cp so that the j−th component is 1 if j /∈ Je and all the
other component is x. Notice that F is equivariant with respect to the group homomorphism

t ∈ C∗t 7→
(
tarβ(Lπ1 ), · · · , tarβ(Lπk )

)
, (tar)j∈Je , t

aδ(e)
)
∈ Gp×C∗ .

Then F descents to be the desired morphism f from Par,1 to PY 1
r ,p. For F to exist, we must

have g = gβ , and (x1, · · · , xn) must belong to the space Y ssβ defined in §3, thus defining a

unique point in the F(β,1Je )(Y ) ∼= [Y ssβ /G]. Conversely, when given a point in F(β,1Je )(Y ), we
can always construct a unique map in the above way up to 2−isomorphisms.

Remark 4.5. If there is a basepoint on the edge curve Ce, then the degree (β(e), 1Je , δ(e)r ) on
Ce must satisfy the relation δ(e) > β(e)(Lθ) + |Je|. Otherwise we have z1|Ce ≡ 0, given the
fact z2 vanishes at q∞, this will violate the nondegeneracy condition for z1 and z2.

4.3. Localization analysis. Fix β ∈ Eff(W,G, θ) and δ ∈ Z>0, we will consider the space

Qθ̃0,~m(PY 1
r ,p, (β, 1p, δr )). The reason why we assume that the second degree is δ

r is thatQθ̃0,~m(PY 1
r ,p, (β, 1p, δr ))

corresponds to Qθ̃0,~m(PY, (β, δ)), here PY is equal to PY 1
r ,p for r = 1 and p = 0. In the re-

maining section, we will always assume that r is a sufficiently large prime.
For each decorated graph Γ, we will associate each vertex v (resp. edge e) a moduli space

Mv(resp. Me) over which there is a family C∗−stable map to PYr,s with the decorated degree.
Denote by FΓ the space∏

v:j(v)=0

Mv ×ĪµD0

∏
e∈E
Me ×ĪµD∞

∏
v:j(v)=∞

Mv ,

where the fiber product is taken by gluing the two branches at each node.
By virtual localization formula of Graber–Pandharipande [GP99], we can write

[Qθ̃0,~m(PY
1
r ,p, (β, 1p,

δ

r
))]vir ,

in terms of contributions from each decorated graph Γ:

(4.9) [Qθ̃0,~m(PY
1
r ,p, (β, 1p,

δ

r
))]vir =

∑
Γ

1

AΓ
ιΓ∗

(
[FΓ]vir

eC∗(Nvir
Γ )

)
.

Here, for each graph Γ, [FΓ]vir is obtained via the C∗-fixed part of the restriction to the fixed

loci of the obstruction theory on Qθ̃0,~m(PY 1
r ,p, (β, 1p, δr )), and Nvir

Γ is the equivariant Euler class
of the C∗-moving part of this restriction. Besides, AΓ is the automorphism factor for the graph
Γ, which represents the degree of FΓ into the corresponding open and closed C∗-fixed substack

iΓ(FΓ) in Qθ̃0,~m(PY 1
r ,p, (β, 1p, δr )). Here our AΓ is the product of the size of the automorphism

group Aut(Γ) of the graph Γ and degrees from each edge moduli Me over the corresponding
fixed loci.

We will do an explicit computation for the contributions of each graph Γ in the following.
As for the contribution of a graph Γ to (4.9), one can first apply the normalization exact
sequence to the relative obstruction theory (4.6) and (4.7), which decomposes the contribution
from Γ to (4.9) into contributions from vertex, edge, and node factors. This includes all but
the automorphisms and deformations within Mtw

0,~m. The latter are distributed in the vertex,
edge, and node factors as deformations of the vertex components, deformations of the edge
components, and deformations of smoothing the nodes, respectively.
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4.3.1. Vertex contributions. First of all, consider the stable vertex v over∞, this vertex moduli
Mv corresponds to the moduli stack K0,~m(v)(

r
√
Lθ/Y , β(v)), which parameterizes twisted stable

maps to the root gerbe r
√
Lθ/Y over Y .

Let

π : C∞ → K0,~m(v)(
r
√
Lθ/Y , β(v))

be the universal curve over K0,~m(v)(
r
√
Lθ/Y , β(v)). In this case, on C∞, we have L−θ ⊗N⊗r ⊗

Cλ ∼= OC∞ as z1|C∞ ≡ 1, hence we have N ∼= L
1
r

θ ⊗ C−λr , here L
1
r

θ is the line bundle over

C∞ that is the pullback of the universal root bundle over r
√
Lθ/Y along the universal map

f : C∞ → r
√
Lθ/Y . The movable part of the perfect obstruction theory comes from the

deformation of z2, thus the inverse of Euler class of the virtual normal bundle is equal to

eC
∗
((−R•π∗L

1
r

θ )⊗ C−λr ).

When r is a sufficiently large prime and the multiplicity m(l) corresponding to each leg l incident
to v is equal to (gl, 1, µ

fl
r ) for some prefixed number fl ∈ Z>0(note this implies fl � r) and

gl ∈ G, following [JPPZ18] to the orbifold case, the above Euler class has a representation

(4.10)
∑
d>0

cd(−R•π∗L
1
r

θ )(
−λ
r

)|E(v)|−1−d .

Here the virtual bundle −R•π∗L
1
r

θ has virtual rank |E(v)| − 1, where |E(v)| is the number of
edges incident to the vertex v. The fixed part of the perfecct obstruction theory contributes to
the virtual cycle

[K0,~m(v)(
r
√
Lθ/Y , β(v))]vir .

For the stable vertex v over 0, the vertex moduli Mv corresponds to the moduli space

Q
εθp
0,~m(v)(Yp, (β(v), 1Jv )).

Let π : C0 → Q
εθp
0,~m(v)(Yp, (β(v), 1Jv )) be the universal curve over Q

εθp
0,~m(v)(Yp, (β(v), 1Jv )).

In this case, the fixed part of the obstruction theory of the vertex moduli over 0 yields the
virtual cycle

[Q
εθp
0,~m(v)(Yp, (β(v), 1Jv ))]vir .

Note that N|C0 = OC0 as z2|C0 ≡ 1, therefore the virtual normal comes from the movable part
of the infinitesimal deformations of the section z1, which is a section of the line bundle L−θp
over C0, whose Euler class is equal to

(4.11) eC
∗
((R•π∗L−θp)⊗ Cλ) .

4.3.2. Edge contributions: basepoint case. When there is a base point on the edge curve, it has

degree (β(e), 1Je , δ(e)r ) with β(e) 6= 0 and δ(e) > β(e)(Lθ) + |Je| by Remark 4.5, we will write
β(e) as β only in this subsection for simplicity unless stated otherwise. Then the multiplicity

at q∞ ∈ Ce is equal to (g, µ
δ(e)
r ) ∈ G×µr, where g = gβ is defined in §3. Let a be the minimal

positive integer associated to β as in §3, which is also the order of gβ . When r is a sufficiently
large prime, due to Remark 4.4, Ce must be isomorphic to P1

ar,1 where the ramification point
q0 for which z1 = 0 is an ordinary point, and the ramification point q∞ for which z2 = 0 must
be a special point, which is isomorphic to Bµar.

Recall that

Fβ(Y ) ∼= [Y ssβ /G] ∼= [(Zssβ ∩AY )/G]

in §3. We now define the edge moduli Me to be

aδ(e)

√
L−θ/[Y ssβ /G] ,
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which is the root gerbe over the stack [Y ssβ /G] by taking aδ(e)th root of the line bundle L−θ
on [Y ssβ /G].

The root gerbe aδ(e)

√
L−θ/[Y ssβ /G] admits a representation as a quotient stack:

[(Y ssβ ×C∗)/(G×C∗w)],

where the (right) action is defined by

(~x, v) · (g, w) = (~x · g, θ(g)vwaδ(e)) ,

for all (g, w) ∈ G×C∗w and (~x, v) ∈ A(Y )g×C∗. Here ~x · g is given by the action as in the
definition of [AY/G]. For every character ρ of G, we can define a new character of G×C∗w by
composing the projection map prG : G×C∗w → G. By an abuse of notation, we will continue
to use the notation ρ to name the new character of G×C∗w. Then the new character ρ will

determines a line bundle Lρ := [(Y ssβ ×C∗ × Cρ)/(G×C∗w)] on aδ(e)

√
L−θ/[Y ssβ /G].

By virtue of its universal property of the root gerbe aδ(e)

√
L−θ/[Y ssβ /G], there is a line bundle

R called root bundle that is the aδ(e)th root of line bundle L−θ over the root gerbe. This root
line bundle R can also constructed by the Borel construction, i.e. R is associated to the
character p2:

prC∗w : G×C∗w → C∗w (g, w) ∈ G×C∗w 7→ w ∈ C∗w .

We have the relation

L−θ = R⊗aδ(e) .
Then the coordinate function (~x, v) ∈ Y ssβ ×C∗ descents to be a tautological sections of vector

bundle
⊕n

i=1 Lρi ⊕ (Lθ ⊗R⊗aδ(e)) on aδ(e)

√
L−θ/[Y ssβ /G].

We will construct a universal family of C∗−fixed quasimaps to PY 1
r ,p of degree (β, 1Je , δ(e)r )

over the edge moduli Me, which takes the form

Ce := Par,1(R⊗a ⊕OMe)
ev //

π

��

PY 1
r ,p

Me := aδ(e)

√
L−θ/[Y ssβ /G] .

The universal curve Ce over the edge moduli Me is constructed as a quotient stack:

Ce = [(Y ssβ ×C∗×U)/(G×C∗w×C∗t )] ,
where the right action is defined by:

(~x, v, x, y) · (g, w, t) = (~x · g, θ(g)vwaδ(e), watarx, ty) ,

for all (g, w, t) ∈ G×C∗w×C∗t and (~x, v, (x, y)) = ((x1, · · · , xn), v, (x, y)) ∈ Y ssβ ×C∗×U .

The universal map ev from Ce to PY 1
r ,p can be presented as follows:

ẽv : Y ssβ ×C∗×U → AYp×U ,

defined by:

(~x, v, (x, y)) ∈ Y ssβ ×C∗×U 7→((
x1x

β(Lρ1 ), · · · , xnxβ(Lρn )
)
, (x)j∈Je , v

−1xδ(e)−β(Lθ)−|Je|, yaδ(e)
)
∈ AYp×U .

(4.12)

Here (x)j∈Je is an element belonging to Cp so that the j−th component is 1 if j /∈ Je and
all the other components are x. Note that when β(Lρi) /∈ Z>0 for some i, we must have
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xi = 0 as ~x ∈ Y ssβ , so the ẽv is well defined. Then ẽv is equivariant with respect to the group
homomorphism from G×C∗w×C∗t to Gp×C∗ defined by:

(g, w, t) ∈ G×C∗w×C∗t 7→(
g ·
(
tarβ(Lπ1

)waβ(Lπ1
), · · · , tarβ(Lπk )waβ(Lπk )

)
, (watar)j∈Je , t

aδ(e)
)
∈ Gp×C∗ .

(4.13)

Here (watar)j∈Je is the element belonging to (C∗)p so that the j−th component is 1 if j /∈ Je
and all the other components are watar. This gives the universal morphism f from Ce to PY 1

r ,p

by descent.
There is a tautological line bundleOCe(1) on Ce associated to the character prC∗t of G×C∗w×C∗t

by the Borel construction. Here prC∗t is the projection map from G×C∗w×C∗t to C∗t .
We will define a (quasi12-left) C∗−action on Ce such that the map ev constructed above

is C∗−equivariant. Define a (left) C∗−action on Ce which is induced from the C∗−action on
Y ssβ ×C∗×U :

m : C∗ × Y ssβ ×C∗×U → Y ssβ ×C∗×U ,

t · (x, v, (x, y)) = (x, v, (x, t
−1

arδ(e) y)) .

Note that the morphism π is also C∗-equivariant, where Me is equipped with the trivial C∗-
action. By the universal property of the projectivized bundle Ce over Me, the line bundle
OCe(1) is equipped with a tautological section

(x, y) ∈ H0
((
OCe(ar)⊗ π∗R⊗a

)
⊕ (OCe(1)⊗ C −1

arδ(e)
)
)
,

which is also a C∗−invariant section. Here OCe(1) is the standard C∗-equivariant line bundle
on Ce by the Borel construction.

Now we can check that ev is a C∗−equivariant morphism from Ce to PY 1
r ,p with respect to

the C∗−actions for Ce and PY 1
r ,p. According to Remark 4.2, ev is equivalent to the following

data:

(1) k + p+ 1 C∗-equivariant line bundles on Ce:

Lj := π∗Lπj ⊗OCe(arβ(Lπj ))⊗ π∗R
⊗aβ(Lπj ), 1 6 j 6 k ,

Lk+j := π∗R⊗a ⊗OCe(ar), j ∈ Je, and Lk+j := C, j /∈ Je
and

N := OCe(aδ(e))⊗ C−λ
r
,

where the line bundles Lπj , R are the standard C∗-equivariant line bundle on Me by
the Borel construction;

(2) a universal section(
~x, ~y, (ζ1, ζ2)

)
:=
(
(x1x

β(Lρ1 ), · · · , xnxβ(Lρn )), (x)Je , (v
−1xδ(e)−β(Lθ)−|Je|, yaδ(e))

)
∈ H0

(
Ce, (⊕ni=1Lρi)⊕ (⊕pj=1Lk+j)⊕ (L−θp ⊗N⊗r ⊗ Cλ)⊕N

)C∗
,

(4.14)

where the line bundles L−θp and Lρi are constructed from line bundles Lj as before.

From the description of Me with the associated family map ev, we see that Me allows a

finite étale map of degree13 1
a into the corresponding fixed loci in Qθ̃0,1(PY 1

r ,p, (β(e), 1Je , δ(e)r )).
Then we can use Me to do the edge localization contribution analysis.

12This means we allow C∗−action on Ce with fractional weight. See a similar discussion in [CLLL16, §2.2].
13This can be seen by comparing the order of the isotropy group of a C−point x ofMe with the order of the

isotropy group of the corresponding point in Qθ̃0,1(PY
1
r
,p, (β(e), 1Je ,

δ(e)
r

)). The former is equal to the product

of the number aδ(e) and the order of the isotropy group of the corresponding point in [Y ssβ /G], while the later

is equal to the product of the number δ(e)(as it represents the order of the group of cyclic coverings of Par,1 of

degree δ(e), see Remark 4.4), and the order of isotropy group of the corresponding point in [Y ssβ /G].
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Equipped with these notations, now we compute the localization contribution from Me.

Based on the perfect obstruction theory for quasimaps in Qθ̃0,~m(PY 1
r ,p, (β, 1p, δr )), the restriction

of the prefect obstruction theory toMe decomposes into three parts: (1) the deformation theory
of source curve Ce; (2) the deformation theory of the lines bundles (Lj)16j6k+p and N ; (3) the
deformation theory for the section

(~x, ~y, (ζ1, ζ2)) ∈ Γ
(
⊕ni=1Lρi ⊕ (⊕pj=1Lk+j)⊕ (L−θp ⊗N⊗r ⊗ Cλ)⊕N

)
.

The virtual normal bundle comes from the movable part of the three parts, and the fixed
part will contribute to the virtual cycle of Me. First every fiber curve Ce in Ce is isomorphic
to Par,1, which is rational. Then the infinitesimal deformations/obstructions of Ce and the line
bundles Lj := Lj |Ce , N := N|Ce are zero. Hence their contribution to the perfect obstruction
theory solely comes from infinitesimal automorphisms. The infinitesimal automorphisms of Ce
come from the space of vector field on Ce that vanishes on special points. Thus the C∗−fixed
part of the infinitesimal automorphisms of Ce comes from the 1−dimensional subspace of vector
fields on Ce which vanish on the two ramification points, which, together with the infinitesimal
automorphisms of line bundle N , will be canceled with the fixed part of infinitesimal deforma-
tion of sections (z1, z2) := (ζ1, ζ2)|Ce . The movable part of infinitesimal automorphisms of Ce
is nonzero only if at least one of ramification points on Ce is not a special point. By Remark
4.4, the ramification q∞ must be a special point since it has nontrivial stacky structure when
r is sufficiently large, and the ramification point q0 is not a special point. Then the movable
part of infinitesimal automorphisms of Ce contributes

δ(e)

λ−Dθ

to the virtual normal bundle.
Now let’s turn to the localization contribution from sections. As for the deformations of

z2, we continue to use the tautological section (x, y) in (4.3.2). Sections of N is spanned by
monomials (xmyn)|Ce with arm + n = aδ(e) and m,n ∈ Z>0. Note that xmyn may not be a
global section of N but always a global section of the line bundle R⊗am ⊗ N ⊗ C m

δ(e)
λ. Then

R•π∗N will decompose as a direct sum of line bundles, each corresponds to the monomial
xmyn, whose first chern class is

c1(R⊗−am
⊗

C−m
δ(e)

λ) =
m

δ(e)
(Dθ − λ) .

So the total contribution is equal to

b δ(e)r c∏
m=0

(
m

δ(e)
(Dθ − λ)

)
.

The term corresponding to m = 0 in the above product is the C∗−invariant part of R•π∗N , it
will contribute to the virtual cycle of Me. The rest contributes to the virtual normal bundle
as

b δ(e)r c∏
m=1

(
m

δ(e)
(Dθ − λ)

)
.

Note that when r is sufficiently large, the above product becomes 1.
For the deformation of z1, arguing in the same way as z2, the Euler class of R•π∗(L−θp ⊗

N⊗r ⊗ Cλ) is equal to
δ(e)−β(Lθ)−|Je|∏

m=0

(
m

δ(e)
(−Dθ + λ)

)
.
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The factor for m = 0 appearing in the above product is the C∗−fixed part of R•π∗(L−θ ⊗
N⊗r ⊗ Cλ), it will contribute to the virtual cycle of Me. The rest contributes to the virtual
normal bundle as

δ(e)−β(Lθ)−|Je|∏
m=1

(
m

δ(e)
(−Dθ + λ)

)
.

Finally, let’s turn to the localization contribution from the sections ~x and ~y. Before that,
using the same argument above, one can prove the following lemma:

Lemma 4.6. When n ∈ Z>0, we have

eC
∗(
R•π∗(OCe(n))

)
=

b nar c∏
m=0

(
m

δ(e)
(Dθ − λ) +

n

arδ(e)
λ

)
.

When n ∈ Z<0, we have

eC
∗(
R•π∗(OCe(n))

)
=

∏
n
ar<m<0

1
m
δ(e) (Dθ − λ) + n

arδ(e)λ
.

Using the above lemma, we have the following description of eC
∗
(R•π∗Lρi) for 1 6 i 6 n.

Then for each ρi, we have:

(1) If β(Lρi) ∈ Q>0, one has

eC
∗(
R•π∗(Lρi)

)
= eC

∗(
R•π∗(π

∗(Lρi)⊗OCe(arβ(Lρi))⊗ π∗(R⊗aβ(Lρi )))
)

= eC
∗(
Lρi ⊗R⊗aβ(Lρi ) ⊗R0π∗(OCe(arβ(Lρi)))

)
=

bβ(Lρi )c∏
m=0

(
Dρi +

β(Lρi)(−Dθ)

δ(e)
+

m

δ(e)
(Dθ − λ) +

β(Lρi)

δ(e)
λ

)

=

bβ(Lρi )c∏
m=0

(
Dρi +

β(Lρi)−m
δ(e)

(λ−Dθ)

)
.

Hence we have

eC
∗
((R•π∗Lρi)mov) =

∏
06m<β(Lρi )

(
Dρi +

β(Lρi)−m
δ(e)

(λ−Dθ)
)
.

Note that the invariant part of R•π∗Lρi is nonzero only when β(Lρi) ∈ Z>0.
(2) If β(Lρi) ∈ Q<0, one has

eC
∗(
R•π∗Lρi

)
= eC

∗(
R•π∗

(
π∗Lρi ⊗OCe(arβ(Lρi))⊗ π∗R⊗aβ(Lρi )

))
=

1

eC∗
(
Lρi ⊗R⊗aβ(Lρi ) ⊗R1π∗(OCe(arβ(Lρi)))

)
=

∏
β(Lρi )<m<0

1

Dρi +
β(Lρi )(−Dθ)

δ(e) + m
δ(e) (Dθ − λ) +

β(Lρi )

δ(e) λ

=
∏

β(Lρi )<m<0

1

Dρi +
β(Lρi )−m

δ(e) (λ−Dθ)
,
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which implies that

eC
∗(

(R•π∗Lρi)mov
)

= eC
∗(
R•π∗Lρi

)
=

∏
β(Lρi )<m<0

1

Dρi +
β(Lρi )−m

δ(e) (λ−Dθ)
.

The movable part of deformation of ~y contributes

eC
∗ (
⊕pj=1R

•π∗(Lk+j)
mov
)

= (
λ−Dθ

δ(e)
)|Je|

to the virtual normal bundle and the fixed part of the deformation of ~y will be canceled with
the automorphisms of line bundles (Lk+j : 1 6 j 6 p).

Recall that the complete intersection Y is cut off by the section s := ⊕cb=1sb of the direct
sum of the line bundles E = ⊕cb=1Lτb on X associated to the characters τb. There is also
an obstruction corresponding to the infinitesimal deformations of ~x being moved away from
[AY ss(θ)/G] ⊂ [W ss(θ)/G], which contributes to the virtual normal bundle as the movable
part of

eC
∗(
− (⊕bR•π∗Lτb)

)
=
eC
∗(
R1π∗ ⊕b:β(Lτb )<0 Lτb)

)
eC∗
(
R0π∗ ⊕b:β(Lτb )>0 Lτb

)
=

∏
b:β(Lτb )<0

∏
β(Lτb )<m<0

(
c1(Lτb) +

β(Lτb )−m
δ(e) (λ−Dθ)

)
∏
b:β(Lτb )>0

∏
06m6β(Lτb )

(
c1(Lτb) +

β(Lτb )−m
δ(e) (λ−Dθ)

) .
Here m are all integers.

One can see that the fixed part only comes from the summand corresponding to the terms
b with β(Lτb) ∈ Z>0, for which there is one dimensional C∗−fixed piece to each −R•π∗Lτb ,
which contributes to the virtual cycle of Me.

Now let’s move to the virtual cycle of Me coming from the C∗−fixed part of the restriction
of perfect obstruction theory. Let Eβ := ⊕b:β(Lτb )∈Z>0

Lτb be the vector bundle over [Zssβ /G]

and sβ := ⊕b:β(Lτb )∈Z>0
sb be the section inside Eβ . Using Lemma 3.2, we can define the Gysin

morphism

s!
Eβ ,loc

: A∗([Z
ss
β /G])→ A∗([Y

ss
β /G])

as the localized top Chern class [Ful84, §14.1]. This Gysin morphism commutes with the one
defined in 3.3 by the flat pullback A∗([Y ssβ /(G/〈g−1

β 〉)]) → A∗([Y ssβ /G]) on the target and the

flat pullback A∗([Zssβ /(G/〈g
−1
β 〉)])→ A∗([Zssβ /G]) on the source.

Lemma 4.7. We have the following:

[Me]
vir = i∗Me

(
s!
Eβ ,loc

([Zssβ /G])
)
.

Here iMe :Me → [Y ssβ /G] is the natural étale morphism by forgetting root structure.

Proof. By the previous discussion, the perfect obstruction theory of Me solely comes auto-
morphisms of line bundles (Lj)kj=1, the fixed part of deformations/obstructions of the section
~x. Using the distinguished triangle 4.8 and 4.7 in §4.2, the C∗−fixed part of the obstruction
complex Efix over Me is quasi-isomorphic to the complex

T[Zssβ /G]|Me

dsβ // Eβ
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with the first term sitting in degree 0 and the second term sitting in degree 1, which also fits
into the following distinguished triangle (from cone construction)

Efix // T[Zssβ /G]|Me

dsβ // Eβ .

Here dsβ is the differential induced the section sβ (c.f. 4.8) and T[Zssβ /G]|Me
is the pullback of

the tangent bundle T[Zssβ /G] along the composition of morphisms

Me → aδ(e)

√
L−θ/[Zssβ /G]→ [Zssβ /G] ,

where the first arrow is the inclusion and the second arrow is the natural étale morphism by
forgetting root.

When we replace Y by X, repeat the same localization analysis as above, we see the fixed part

of the restriction of the obstruction theory to the edge moduliMe(X) := aδ(e)

√
L−θ/[Zssβ /G] of

X is equal to the tangent complex ofMe(X), which is a locally free sheaf sitting in degree zero
as Me(X) is a smooth Deligne-Mumford stack. Then we can view Me as the zero loci of the
section sβ of the vector bundle Eβ overMe(X) by Lemma 3.2, one has the following Cartesian
diagram:

Me

i

��

i //Me(X)

sβ

��
Me(X)

0 // Eβ ,

where the bottom arrow is the zero section. Then we have a morphism of two distinguished
triangles in Db

coh(Me) with all terms in the first low are perfect complexes with amplitude in
[−1, 0]

T∨[Zssβ /G]|Me
// (Efix)∨ //

��

E∨>0[1]
ds∨β //

i∗

��

T∨[Zssβ /G]|Me [1]

ΩMe(X)|Me
// t>−1LMe

// IMe/Me(X)/I2
Me/Me(X)[1]

d // ΩMe(X)|Me .

Here the first and the second vertical maps are the perfect (dual) obstruction theory forMe(X)
and Me (both restricted to Me) respectively, while the third vertical map is an obstruction
theory for C∗−fixed quasimaps in Me with the section ~x moving away from Y into X, and a
standard deformation theory argument (c.f. [CL11, Proposition 2.5]) shows the third vertical
map i∗ is induced from the pullback of the conormal sheafs for the horizontal arrows in the
above Cartesian square along the left arrow i. Then virtual cycle [Me]

vir with respect to the
(dual) perfect obstruction theory (Efix)∨ → t>−1LMe can be obtained by Manolache’s virtual
pull-back [Man11, Construction 3.6], which is also identical to Gysin pullback 0! = s!

Eβ ,loc

(by the very of definition of localized top Chern class). Now the Lemma is immediate by flat
pull-back along iMe

. �
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We have the expression of virtual normal bundle from the movable part of curves, line bundles
and sections as follows:

eC
∗
(Nvir) =

∏
ρ:β(Lρ)>0

∏
06i<β(Lρ)(Dρ + (β(Lρ)− i)λ−Dθδ(e) )∏

ρ:β(Lρ)<0

∏
bβ(Lρ)+1c6i<0(Dρ + (β(Lρ)− i)λ−Dθδ(e) )

· (λ−Dθ

δ(e)
)|Je|

δ(e)

λ−Dθ

·

∏
b:β(Lτb )<0

∏
β(Lτb )<m<0

(
c1(Lτb) +

β(Lτb )−m
δ(e) (λ−Dθ)

)
∏
b:β(Lτb )>0

∏
06m<β(Lτb )

(
c1(Lτb) +

β(Lτb )−m
δ(e) (λ−Dθ)

) · δ(e)−β(Lθ)−|Je|∏
m=1

(
m

δ(e)
(−Dθ + λ)

)
.

(4.15)

We observe that, after taking the push-forward along the morphism ft : Me → IgβY which
is the composition of the map of forgetting root structure of Me first and the map of taking
inclusion [Y ssβ /G]→ [AY ss(θ)gβ/G] ∼= IgβY afterwards, the localization contribution from the
edge moduli with basepoints yields:

Lemma 4.8.

ft∗(ContMe
) = ft∗

(
[Me]

vir

eC∗(Nvir)

)
=

1

aδ(e)
ι∗

( (
z

z|Je|
Iβ(z)

)
|
z=

λ−Dθ
δ(e)∏δ(e)−β(Lθ)−|Je|

m=1

(
m
δ(e) (−Dθ + λ

)) ,

where ι is the involution of ĪµY obtained from taking the inverse of the band, and Iβ(z) is the
coefficient of qβ of I(q, 0, z) defined in the introduction 1.1.2.

4.3.3. Edge contributions: without basepoint case. The contribution from an edge without base-
point will not appear in the later analysis in §6. However we include the discussion for this case
here for completeness. The reader is encouraged to skip this part in the first reading. In this

case, Je is empty. Assume that the multiplicity at q∞ ∈ Ce is equal to (g, µ
δ(e)
r ) ∈ G×µr and

ae (or a for simplicity) is the order of g. When r is sufficiently large, due to Remark 4.4, Ce
must be isomorphic to P1

ar,a where the ramification point q0 for which z1 = 0 is isomorphic to
Bµa, and the ramification point q∞ for which z2 = 0 must be a special point and is isomorphic

to Bµar. The restriction of degree (β, δr ) from C to Ce is equal to (0, δ(e)r ), which is equivalent
to:

deg(Lj |Ce) = 0 for 1 6 j 6 k, deg(N |Ce) =
δ(e)

r
.

Recall that the inertia stack component IgY of IµY is isomorphic to the quotient stack

[AY ss(θ)g/G] .

We construct the edge moduli Me as

Me := aδ(e)

√
L−θ/IgY ,

which is the root gerbe over the stack IgY by taking the aδ(e)th root of the line bundle L−θ.

The root gerbe aδ(e)
√
L−θ/IgY admits a representation as a quotient stack:

(4.16) [(AY ss(θ)g×C∗)/(G×C∗w)] ,

where the (right) action is defined by:

(~x, v) · (g, w) = (~x · g, θ(g)vwaδ(e)) ,

for all (g, w) ∈ G×C∗w and (~x, v) ∈ AY ss(θ)g×C∗. Here ~x · g is given by the action as in the
definition of [AY/G], the torus C∗w is isomorphic to C∗ with variable w. For any character ρ of
G, define a new character of G×C∗w by composing the projection map prG : G×C∗w → G. By an
abuse of notation, we will continue to use the notation ρ to mean the new character of G×C∗w.
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Then ρ will determines a line bundle Lρ := [(AY ss(θ)g×C∗×Cρ)/(G×C∗w)] on aδ(e)
√
L−θ/IgY

by the Borel construction.
By virtue of the universal property of root gerbe, on Me = aδ(e)

√
L−θ/IgY , there is a

universal line bundle R that is the aδ(e)th root of the line bundle L−θ. The root bundle R is
associated to the character

prC∗ : G×C∗w → C∗w, (g, w) ∈ G×C∗w 7→ w ∈ C∗w
by the Borel construction. We have the relation

L−θ = Raδ(e) .
The coordinate functions ~x and v of AY ss(θ)g × C∗ descents to be universal sections of line
bundles ⊕ρ∈[n]Lρ and Lθ ⊗R⊗aδ(e) over Me, respectively.

We will construct a universal family of C∗−fixed quasimaps to PY 1
r ,p of degree (0, 1∅, δ(e)r )

over Me:

Ce := Par,a(R⊕OMe
)

f //

π

��

PY 1
r ,p

Me := aδ(e)
√
L−θ/IgY .

Then the universal curve Ce over Me can be represented as a quotient stack:

Ce = [(AY ss(θ)g×C∗×U)/(G×C∗w×T )] ,

where T = {(t1, t2) ∈ (C∗)2| ta1 = tar2 }. The (right) action is defined by:

(~x, v, x, y) · (g, w, (t1, t2)) = (~x · g, θ(g)vwaδ(e), wt1x, t2y) ,

for all (g, w, (t1, t2)) ∈ G×C∗w×T and (~x, v, (x, y)) ∈ AY ss(θ)g×C∗×U . Then Ce is a family of
orbifold Par,a parameterized by Me.

There are two standard characters χ1 and χ2 of T :

χ1 : (t1, t2) ∈ T 7→ t1 ∈ C∗, χ2 : (t1, t2) ∈ T 7→ t2 ∈ C∗ .

We can lift them to be new characters of G×C∗w×T by composing the projection map prT :
G×C∗w×T → T . By an abuse of notation, we continue to use χ1, χ2 to denote the new characters.
Then χ1, χ2 defines two line bundles

M1 := (AY ss(θ)g×C∗×U)×G×C∗w×T Cχ1

and

M2 := (AY ss(θ)g×C∗×U)×G×C∗w×T Cχ2

on Ce by the Borel construction, respectively. We have the relation M⊗a1 = M⊗ar2 on Ce. The

universal map f from Ce to PY 1
r ,p can be constructed as follows: let

f̃ : AY ss(θ)g×C∗×U → AY ×U
be the morphism defined by:

(~x, v, x, y) ∈ AY ss(θ)g×C∗×U 7→

((x1, · · · , xn), v−1xaδ(e), yaδ(e)) ∈ AY ×U
(4.17)

Then f̃ is equivariant with respect to the group homomorphism from G×C∗w×T to G×C∗
defined by:

(g, w, (t1, t2)) ∈ G×C∗w×T 7→

(g · ((t−1
1 tr2)p1 , · · · , (t−1

1 tr2)pk), t
aδ(e)
2 ) ∈ G×C∗ ,

(4.18)
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where the tuple (p1, · · · , pk) ∈ Nk satisfies that g = (µp1
a , · · · , µpka ) ∈ G. Note that f̃ is well

defined for χ−1
1 χr2 is a torsion character of T of order a. The above construction gives the

universal morphism f from Ce to PY 1
r ,p by descent.

Now we define a (quasi left) C∗−action on Ce such that f is C∗−equivariant. The C∗-action
on Ce is induced by the C∗−action on AY ss(θ)g×C∗×U :

m : C∗ ×AY ss(θ)g×C∗×U → AY ss(θ)×C∗×U ,

t · (~x, v, (x, y)) = (~x, v, (x, t
−1

arδ(e) y)) .

Note that then π is C∗-equivariant map, where Me is equipped with the trivial C∗-action. By
the universal property of the projectivized bundle Ce over Me, one has a tautological section

(x, y) ∈ H0(Ce, (M1 ⊗ π∗R)⊕ (M2 ⊗ C −1
arδ(e)

)) ,

which is also a C∗−invariant section.
Now we can check that f is a C∗−equivariant morphism from Ce to PY 1

r ,p with respect to
the C∗−actions for Ce and PY 1

r ,p. Using Remark 4.2, f is given by the following data:

(1) k + p+ 1 C∗−equivariant line bundles Ce:

Lj := π∗Lπj ⊗ (M∨1 ⊗M⊗r2 )pj , 1 6 j 6 k ,

Lk+j := C, 1 6 j 6 p

and

N := M
aδ(e)
2 ⊗ C−λ

r
,

where (Lπj )16j6k are the standard C∗-equivariant line bundles on Me by the Borel
contribution, M1,M2 are the standard C∗-equivariant line bundles on Ce by the Borel
construction;

(2) a universal section

(~x, ~y, (ζ1, ζ2)) :=((x1, · · · , xn), 1p, (v−1xaδ(e), yaδ(e)))

∈ H0(Ce,⊕ni=1Lρj ⊕ (⊕pj=1Lk+j)⊕ (L−θp ⊗N⊗r ⊗ Cλ)⊕N )C
∗
.

(4.19)

Use the similar analysis as previous subsection, we have that [Me]
vir = [Me] and the Euler

class of virtual normal bundle from the sections is equal to

(4.20) eC
∗
(Nvir) =

δ(e)∏
m=1

(
m

δ(e)
(−Dθ + λ)

)
,

when r is a sufficiently large prime. Besides the movable part of infinitesimal automorphisms
of Ce contributes

(4.21)
δ(e)

λ−Dθ

to the Euler class of virtual normal bundle when a = 1.

4.3.4. Node contributions. The deformations in Qθ̃0,~m(PY 1
r ,p, (β, 1p, δr )) smoothing a node con-

tribute to the Euler class of the virtual normal bundle as the first Chern class of the tensor
product of the two cotangent line bundles at the branches of the node. For nodes at which a
component Ce meets a component Cv over the vertex 0, this contribution is

(4.22)
λ−Dθ

aδ(e)
− ψ̄v

a
;
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for nodes at which a component Ce meets a component Cv over the vertex∞, this contribution
is

(4.23)
−λ+Dθ

arδ(e)
− ψ̄v
ar

;

for nodes at which two edge components Ce and Ce′ meet with a vertex v over 0, the node-
smoothing contribution is

(4.24)
λ−Dθ

aδ(e)
+
λ−Dθ

aδ(e′)
.

The nodes at which two edge components Ce and Ce′ meet with a vertex v over ∞ will not
occur using a similar argument in [JPPZ17, Lemma 6] when r is sufficiently large.

As for the node contributions from the normalization exact sequence of relative obstruction
theory (4.6), each node q (specified by a vertex v) contributes the inverse of Euler class of

(4.25) (R0π∗(L∨θ ⊗N⊗r ⊗ Cλ)|q)mov ⊕ (R0π∗N|q)mov

to the Euler class of the virtual normal bundle. Note that here we use the fact that the node
can’t be a base point, which implies that Lθp |q = Lθ|q.

In the case where j(v) = 0, z2|q = 1 gives a trivialization of N at q. Thus, the second factor
in (4.25) is trivial, while the inverse of the Euler class of the first factor equals

(4.26)
1

λ−Dθ

In the case where j(v) = ∞, z1|q = 1 gives a trivialization of the fiber (L∨θ ⊗N⊗r ⊗ Cλ)|q.
Hence we have N|q ∼= L

1
r

θ |q⊗C−λr , this implies that it R0π∗(N|q) = 0 because of the nontrivial

stacky structure when r is sufficiently large. Thus there is no localization contribution from
the normalization sequence at the node over ∞.

4.4. Total localization contributions. For each decorated graph Γ, denote the moduli FΓ

to be the fiber product ∏
v:j(v)=0

Mv ×ĪµY
∏
e∈E
Me ×Īµ r

√
Lθ/Y

∏
v:j(v)=∞

Mv

of the following diagram:

FΓ
//

��

∏
v:j(v)=0

Mv ×
∏
e∈E
Me ×

∏
v:j(v)=∞

Mv

evnodes

��∏
E

(ĪµY × Īµ r
√
Lθ/Y )

(∆×∆
1
r )|E| // ∏

E

(ĪµY )2 × (Īµ
r
√
Lθ/Y )2 ,

where ∆ = (id, ι)(resp. ∆
1
r = (id, ι)) is the diagonal map of ĪµY (resp. Īµ

r
√
Lθ/Y ). Here when

v is a stable vertex, the vertex moduli Mv is described in 4.3.1; when v is an unstable vertex,
we treat Mv := Īm(h)−1Dj(v) with the virtual cycle given by the fundamental class of Mv and
zero virtual normal bundle, where h is the half-edge incident to v. The right-hand vertical map
evnodes is the product of the evaluation maps at the two branches of each gluing node.

We define [FΓ]vir to be the fiber product:∏
v:j(v)=0

[Mv]
vir ×ĪµY

∏
e∈E

[Me]
vir ×

Īµ
r
√
Lθ/Y

∏
v:j(v)=∞

[Mv]
vir .



A MIRROR THEOREM FOR GROMOV-WITTEN THEORY WITHOUT CONVEXITY 33

Then the contribution of decorated graph Γ to the virtual localization is:

(4.27) ContΓ =

∏
e∈E ae

|Aut(Γ)|
(ιΓ)∗

(
[FΓ]vir

eC∗(Nvir
Γ )

)
.

Here ιF : FΓ → Qθ̃0,~m(PY 1
r ,p, (β, 1p, δr )) is a finite etale map of degree |Aut(Γ)|∏

e∈E ae
into the corre-

sponding C∗-fixed loci. The virtual normal bundle eC
∗
(Nvir

Γ ) is the product of virtual normal
bundles from vertex contributions ((4.10), (4.11)), edge contributions ((4.15), (4.20), (4.21))
and node contributions ((4.22), (4.23), (4.24), (4.26)).

Remark 4.9. Let u be a polynomial on c1(Lπ1
), · · · , c1(Lπk). In the contribution from the

graph Γ, assume that j ∈ Je for some edge e, then êvj |FΓ
factors through the projection

from FΓ to Me. By abusing notations, we denote êvj : Me → Y. Thus when we want to
apply virtual localization to

∏p
j=1 êv

∗
j (u(c1(Lπk))), we can replace Iβ(q, z) in Lemma 4.8 by

u(c1(Lπk)+β(Lπk)z)|Je|Iβ(q, z). Indeed, use the setting in §4.3.2, denote ev := prr,p ◦ev : Ce →
Y, where prr,p : PY 1

r ,p → Y is the natural projection map. Then we have

ev∗(Lτ ) = π∗(Lτ ⊗Raβ(Lτ ))⊗OCe(arβ(Lτ ))

for any character τ of G. Let D0 be the zero section of Ce overMe given by x = 0. Then êvj =

ev|D0
. Note that OCe(1)|D0

= C λ
arδ(e)

. Using the fact Raδ(e) = L−θ, we have c1(êv∗(Lτ )) =

c1(Lτ ) + β(Lτ )(λ−Dθ)
δ(e) .

5. Master space II

5.1. Construction of master space II. Fix two different primes r, s ∈ N, let θ be as in the
previous section, let PYr,s be the root stack of the P1 bundle PY (O(−Dθ)⊕O) over Y by taking
the s-th root of the zero section (z1 = 0) and r-th root of the infinity section (z2 = 0). Then

the zero section D0 ⊂ PYr,s is isomorphic to the root stack s
√
L−θ/Y , and the infinity section

D∞ ⊂ PYr,s is isomorphic to the root stack r
√
Lθ/Y .

We give a more concrete presentation of PYr,s as a quotient stack:

PYr,s = [(C∗×AY ss(θ)×U)/(G×C∗α×C∗t )] ,
where the (right) G×C∗α×C∗t -action on C∗×AY ss(θ)×U is given by:

(u, ~x, z1, z2) · (g, α, t) = (α−sθ(g)−1tru, ~xg, αz1, tz2) ,

for (g, α, t) ∈ G×C∗α×C∗t , and (u, ~x, z1, z2) ∈ C∗×AY ss(θ)×U . Here U = C2\{0}. This quotient
stack presentation of PYr,s comes from the root stack construction in [AGV08, Appendix B]
after some simplification.

When the integer r is prime to the orders of isotropy groups of all points of X, which happens,
in particular, as r is a sufficiently large prime, the rigidified inertia stack ĪµPYr,s of PYr,s is
isomorphic to the disjoint union

P(ĪµY )r,s︸ ︷︷ ︸
1

t
s−1⊔
i=1

ĪµY︸ ︷︷ ︸
2

t
r−1⊔
j=1

ĪµY︸ ︷︷ ︸
3

.

Let (~x, (g, α, t)) be a C−point of the rigidified inertia stack ĪµPYr,s, if the point (~x, (g, α, t))
appears in the first factor of the decomposition above, then the automorphism µ = (g, α, t)
lies in G×{1}×{1}, and the space P(ĪµY )r,s can be further decomposed as the disjoint union⊔
g∈G P(ĪgY )r,s , where P(ĪgY )r,s is defined as the quotient stack

P(ĪgY )r,s := [(C∗×AY ss(θ)g×U)/((G/〈g〉)×C∗α×C∗t )] ,
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with the action similar to PYr,s as above, Note that this action is well-defined as the character
θ is trivial on the subgroup 〈g〉 of G; if the point (~x, (g, α, t)) occurs in the second factor of the
decomposition above, then the automorphism (g, α, t) lies in G×{µis : 1 6 i 6 s − 1}×{1} ⊂
G×C∗α×C∗t , and the point ~x is in the zero section D0 defined by z1 = 0; finally if the point
(~x, (g, α, t)) belongs to the third factor of the decomposition above, then the automorphism
(g, α, t) lies in G×{1}×{µjr : 1 6 i 6 r − 1} ⊂ G×C∗α×C∗t , and ~x is in the infinity section D∞
defined by z2 = 0. Here µr = exp( 2π

√
−1
r ) ∈ C∗ and µs = exp( 2π

√
−1
s ) ∈ C∗.

Fix (g, α, t) ∈ G×µs×µr, we will use the notation Ī(g,α,t)PYr,s to mean the rigidified inertia

stack component of ĪµPYr,s which has automorphism (g, α, t). Note that if α and t are not
equal to 1 simultaneously, then the corresponding rigidified inertia stack component is empty.

Let K0,m(PYr,s, (d, δr )) be the moduli stack of m-Pointed twisted stable maps to PYr,s of

degree (d, δr ). More concretely,

K0,m(PYr,s, (d,
δ

r
)) = {(C; q1, . . . , qm;L1, · · · , Lk, N1, N2;u, ~x := (x1, . . . , xm), z1, z2)},

where (C; q1, . . . , qm) is a m-pointed prestable balanced twisted curve of genus 0 with nontrivial
isotropy only at special points, (Lj : 1 6 j 6 k) and N1, N2 are orbifold line bundles on C with

deg([~x]) = d ∈ Hom(Pic(Y),Q), deg(N2) =
δ

r
,

and

(u, (~x, ~z)) := (u, x1, . . . , xn, z1, z2) ∈ Γ

((
(N∨1 )⊗s⊗L−θ⊗N⊗r2

)
⊕

n⊕
i=1

Lρi ⊕N1 ⊕N2

)
.

Here, for 1 6 i 6 n, the line bundle Lρi is equal to

⊗kj=1L
mij
j ,

where (mij)16i6n, 16j6k is given by the relation ρi =
∑k
j=1mijπj . The same construction

applies to the line bundle L−θ on C. Note that here δ is an integer when K0,m(PYr,s, (d, δr )) is

nonempty as N⊗r2 is the pullback of some line bundle on the coarse moduli curve C.
We require this data to satisfy the following conditions:

• Representability: For every q ∈ C with isotropy group Gq, the homomorphism BGq →
B(G×C∗α×C∗t ) given by the restriction of line bundles (Lj : 1 6 j 6 k) and N1, N2 on
q is representable.
• Nondegeneracy: The sections z1 and z2 never simultaneously vanish, and we have

(5.1) ordq(~x) = 0.

for all q ∈ C. Furthermore, the section u never vanish, so we have (N∨1 )⊗s⊗L−θ⊗N⊗r2
∼=

OC .
• Stability: the map [u, ~x, ~z] : (C, q1, · · · , qm) → PYr,s satisfies the usual stability condi-

tion defined by a twisted stable map;
• Vanishing: The image of [~x] : C → X lies in Y.

Let ~m = (v1, · · · , vm) ∈ (G×µs×µr)m, we will denote K0,~m(PYr,s, (d, δr )) to be:

K0,m(PYr,s, (d,
δ

r
)) ∩ ev−1

1 (Īv1
PYr,s) ∩ · · · ∩ ev−1

m (ĪvmPYr,s) ,

where

evi : K0,~m(PYr,s, (d,
δ

r
))→ ĪµPYr,s,

are natural evaluation maps as before, by evaluating the sections (u, ~x, ~z) at qi.
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5.2. C∗-action and fixed loci. Define a (left) C∗-action on C∗×AY ss(θ)×U given by

t · (u, ~x, (z1, z2)) = (tu, ~x, (z1, z2)) .

This action descends to be a (left) C∗-action on PYr,s, which induces a C∗-action onK0,~m(PYr,s, (d, δr )).
The reason why we define this action is that this definition lifts the C∗-action on PY defined in
§4.1 along the canonical structure map πr,s : PYr,s → PY . We will denote λ to be equivariant
parameter corresponding to the action of weight 1. In this remaining subsection, r, s will be
always assumed to be sufficiently large primes.

We will describe the virtual localization forK0,~m(PYr,s, (β, δr )) similar toQθ̃0,~m(PY 1
r ,p, (β, 1p, δr )),

but the edge contribution is easier to analyze as there is no basepoint occurring for twisted stable
maps.

We index the components of C∗−fixed loci of K0,~m(PYr,s, (β, δr )) by decorated graphs. A
decorated graph Γ consists of vertices, edges, and m legs with the following decorations it:

• Each vertex v is associated with an index j(v) ∈ {0,∞}, and a degree β(v) ∈ Eff(W,G, θ).
• Each edge e = {h, h′} is equipped with a degree δ(e) ∈ N, here we call h and h′ half

edges and each edge is incident to a unique vertex.
• Each half-edge h and each leg l has an element m(h) or m(l) in G×µs × µr.
• The legs are labeled with the numbers {1, . . . ,m}, and each leg is incident to a unique

vertex.

By the “valence” of a vertex v, denoted val(v), we mean the total number of incident half-edges
and legs.

For each C∗−fixed stable map f in K0,~m(PYr,s, (β, δr )), we can associate a decorated graph
Γ in the following way.

• Each edge e corresponds to a genus-zero component Ce on which deg(N2) = δ(e)
r for

some integer δ(e) ∈ Z>0, where there are two distinguished points q0 and q∞ on Ce
satisfying that z2|q∞ = 0 and z1|q0 = 0, respectively. We call them the “ramification
points”. Note that we have deg(Lj |Ce) = 0 for all 1 6 j 6 k.
• Each vertex v for which j(v) = 0 (with unstable exceptional cases noted below) cor-

responds to a maximal sub-curve Cv of C over which z1 ≡ 0, then the restriction of
(C; q1, . . . , qm;L1, · · · , Lk; ~x) to Cv defines a twisted stable map in

K0,val(v)(
s
√
L−θ/Y , β(v)) :=

⊔
d∈Eff(AY,G,θ)
(iY)∗(d)=β(v)

K0,val(v)(
s
√
L−θ/Y , d) .

Each vertex v for which j(v) = ∞ (again with unstable exceptions) corresponds to a
maximal sub-curve for which z2 ≡ 0, then the restriction of (C; q1, . . . , qm;L1, · · · , Lk; ~x)
to Cv defines a twisted stable map in

K0,val(v)(
r
√
Lθ/Y , β(v)) :=

⊔
d∈Eff(AY,G,θ)
(iY)∗(d)=β(v)

K0,val(v)(
r
√
Lθ/Y , d) .

The label β(v) denotes the degree coming from the restriction [x]|Cv : Cv → X. Note
that here we count the degree β(v) in Eff(W,G, θ), but not in Eff(AY,G, θ).
• A vertex v is unstable if stable twisted maps of the type described above do not exist

(where, as always, we interpret legs as marked points and half-edges as half-nodes). In
this case, we have β(v) = 0 and v corresponds to a single point of the component Ce
for each adjacent edge e, which may be a node at which Ce meets another edge curve
Ce′ , a marked point of Ce, or an unmarked point.
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• The index m(l) on a leg l indicates the rigidified inertia stack component Īm(l)PYr,s of
PYr,s on which the marked point corresponding to the leg l is evaluated, this is deter-
mined by the multiplicity of L1, · · · , Lk, N1, N2 at the corresponding marked points.
• A half-edge h of an edge e corresponds a ramification point q ∈ Ce. Then m(h) indicates

the rigidified inertia component Īm(h)PYr,s of PYr,s on which the ramification point q
associated with h is evaluated.

In particular, we note that the decorations at each stable vertex v yield a vector

~m(v) ∈ (G× µs × µr)val(v)

recording the multiplicities of L1, · · · , Lk, N1, N2 at every special point of Cv

Remark 5.1. For each edge e, the restriction of ~x to Ce defines a constant map to Y . So the
restriction of (u, ~x, ~z) to Ce defines a representable map

f : Ce → BGy × P1
r,s

where y ∈ Y comes from ~x and Gy is the isotropy group of y ∈ Y . Then we have m(q0) =

(g−1, µ
δ(e)
s , 1) and m(q∞) = (g, 1, µ

δ(e)
r ) for some g ∈ Gy. denote a to be the order of element

g ∈ G. Note that when r and s are sufficiently large primes comparing to δ(e), we must have
Ce ∼= P1

ar,as and q0 and q∞ are special points as they are nontrivial stacky points. Here P1
ar,as

is the unique Deligne-Mumford stack with coarse moduli P1, isotropy group µas at 0 ∈ P1,
isotropy group µar at ∞ ∈ P1, and generic trivial stabilizer. We can write down the morphism
f more precisely. First Ce can be represented as the quotient stack:

[U/Tar,as] ,

where U = C2\{0}, Tar,as is a subtorus of (C∗)2 defined by the equation tas1 = tar2 , and Tar,as
acts on U in the standard way as (C∗)2 does. Then f can be constructed explicitly from descent

data (f̃ , β̃): let f̃ be the morphism

f̃ : U → C∗ × U ; (x, y)→ (1, xδ(e), yδ(e)) ,

which is equivariant with respect to the group homomorphism

β̃ : Tar,as → Gy × Tr,s; (t1, t2)→ (τ(t−s1 tr2), t
aδ(e)
1 , t

aδ(e)
2 ) ,

where τ is the morphism from the cyclic group µa to Gy which sends the generator µa to g.

5.3. Localization analysis. Fix β ∈ Eff(W,G, θ), δ ∈ Z>0 and ~m = (v1, · · · , vm) ∈ (G×µs×
µr)

m, we will consider the space K0,~m(PYr,s, (β, δr )). The reason why we assume that the second

degree is δ
r is thatK0,m(PYr,s, (β, δr )) admits a natural morphism toK0,m(PY, (β, δ))(c.f.[AJT15,

TT16]). Here PY is equal to PYr,s for r = s = 1. In this section, we will always assume that r
and s are sufficiently large primes.

Now we analyze the C∗−localization contribution for K0,~m(PYr,s, (β, δr )) as in §4.3.

5.3.1. Vertex contributions. The analysis of localization contribution for the stable vertex v is
similar to the analysis in §4.3.1.

For each stable vertex v over∞, the vertex moduliMv corresponds to the moduli stackK0,~m(v)(
r
√
Lθ/Y , β(v)),

which parameterizes twisted stable maps to the root gerbe r
√
Lθ/Y over Y .

Let
π : C∞ → K0,~m(v)(

r
√
Lθ/Y , β(v))

be the universal curve over K0,~m(v)(
r
√
Lθ/Y , β(v)). Follow the same discussion in §4.3.1, the

inverse of the Euler class of the virtual normal bundle for the vertex moduli Mv over ∞ is
equal to

eC
∗
((−R•π∗L

1
r

θ )⊗ C−λr ) .



A MIRROR THEOREM FOR GROMOV-WITTEN THEORY WITHOUT CONVEXITY 37

When r is a sufficiently large prime and the multiplicity m(l) corresponding to each leg l
incident to v is equal to (gl, 1, µ

fl
r ) for some prefixed fl ∈ Z>0(note this implies fl � r) and

gl ∈ G, following a generalization of [JPPZ18] to the orbifold case. The above Euler class has
a representation

(5.2)
∑
d>0

cd(−R•π∗L
1
r

θ )(
−λ
r

)|E(v)|−1−d .

Here the virtual bundle −R•π∗L
1
r

θ has virtual rank |E(v)| − 1, where |E(v)| is the number of
edges incident to the vertex v. The fixed part of the obstruction theory contributes to the
virtual cycle

[K0,~m(v)(
r
√
Lθ/Y , β(v))]vir .

For the stable vertex v over 0, the vertex moduli Mv corresponds to the moduli space
K0,~m(v)(

s
√
L−θ/Y , β(v)),

Let
π : C0 → K0,~m(v)(

s
√
L−θ/Y , β(v))

be the universal curve over K0,~m(v)(
s
√
L−θ/Y , β(v)), and f : C0 → s

√
L−θ/Y be the universal

map. In this case, the fixed part of the perfect obstruction theory for the vertex moduli over 0
yields the virtual cycle

[K0,~m(v)(
s
√
L−θ/Y , β(v))]vir .

Note that N2|C0 ∼= OC0 as z2|C0 ≡ 1, the virtual normal bundle comes from the movable part

of the infinitesimal deformations of z1, which is a section of the line bundle L
1
s

−θ over C0, which

is the pullback of the universal s−th root line bundle on s
√
L−θ/Y via the universal map f .

Then the inverse of the Euler class of the virtual normal bundle is equal to

(5.3) eC
∗
((−R•π∗L

1
s

−θ)⊗ Cλ
s
) .

We will simplify the above presentation when β(v) 6= 0. First, we will state a simple vanishing
lemma regarding a line bundle of negative degree on a genus zero twisted curve, of which the
proof is proceeded by induction on the number of irreducible components.

Lemma 5.2. Let L be a line bundle of negative degree on a genus zero twisted curve C. Assume
that the degree of the restriction of the line bundle L|Ci to every irreducible component Ci is
non-positive. Then we have H0(C,L) = 0 .

Remark 5.3. For every fiber curve C0 of the universal curve C0 over Mv. The degree of the

restricted line bundle L
1
s

−θ|C0 to C0 is non-positive. Indeed, L
1
s

−θ is the pullback of the s-th

root of the line bundle L−θ on s
√
L−θ/Y , where L−θ is the pullback of an anti-ample line

bundle from the coarse moduli of s
√
L−θ/Y . Now assuming β(v) 6= 0, we have the degree of

the restricted line bundle L
1
s

−θ|C0
is negative by Lemma 2.5. By the above lemma, one has

R0π∗L
1
s

−θ = 0 .

Then we have

−R•π∗L
1
s

−θ = R1π∗L
1
s

−θ ,

which implies that R1π∗L
1
s

−θ is a vector bundle. When s is sufficiently large, and the multiplicity

m(l) corresponding to each leg l incident to v is equal to (gl, µ
fl
s , 1) for some prefixed number

fl ∈ Z>0(note this implies fl << s) and gl ∈ G, it has rank |E(v)| − 1 where |E(v)| is the
number of edges incident to the vertex v. Especially when |E(v)| = 1, it has rank 0, thus the
Euler class becomes 1, this case will be important in the later simplification of the localization
contribution in §6.2.
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5.3.2. Edge contributions. Assume that the multiplicity at q∞ ∈ Ce is equal to (g, 1, µ
δ(e)
r ) and

a (or ae) is the order of g ∈ G. When r, s are sufficiently large primes, due to the Remark 5.1,
Ce must be isomorphic to P1

ar,as where the ramification point q0 for which z1 = 0 is isomorphic
to Bµas, and the ramification point q∞ for which z2 = 0 is isomorphic to Bµar. The restriction

of the degree (β, δr ) from C to Ce is equal to (0, δ(e)r ), which is equivalent to:

deg(Lj |Ce) = 0, for 1 6 j 6 k, deg(N2|Ce) =
δ(e)

r
.

When we fix the multiplicity (g, 1, µ
δ(e)
r ) at q∞, due to the Remark 5.1,14 the evaluation map

evq∞ : Kq0tq∞(PYr,s, (0,
δ(e)

r
))C
∗
→ Ī

(g,1,µ
δ(e)
r )

PYr,s ∼= ĪgY

coming from the moduli KC∗ := K0,q0tq∞(PYr,s, (0, δ(e)r ))C
∗

of C∗−fixed maps of degree (0, δ(e)r )
with the decorations at two markings as above induces the identity on the their coarse moduli.
Moreover it’s finite étale of degree 1

aδ(e) . To compute the edge contribution, which is topological

in nature, it suffices to do a localization analysis over a finite étale cover of KC∗ . In the following,
we will construct a space called Me which is finite étale over KC∗ of degree 1

as and carries a
family of C∗−fixed morphisms.

Recall that the inertia stack component IgY of IµY is isomorphic to

[AY ss(θ)g/G] .

We define the edge moduli Me to be

asδ(e)

√
L−θ/IgY = asδ(e)

√
L−θ/[AY ss(θ)g/G] ,

which is the asδ(e)th root gerbe over the inertia stack component IgY of IµY by taking the
asδ(e)th root of the line bundle L−θ.

The root gerbe asδ(e)
√
L−θ/IgY admits a representation as a quotient stack:

[AY ss(θ)g×C∗/(G×C∗w)],

where the (right) action is defined by:

(~x, v) · (g, w) = (~xg, θ(g)−1vw−asδ(e)) ,

for all (g, w) ∈ G×C∗w and (~x, v) ∈ AY ss(θ)g×C∗. For every character ρ of G, we can define a
new character of G×C∗w by composing the projection map prG : G×C∗w → G, we will still use
ρ to name the new character of G×C∗w by an abuse of notation. Then ρ will determines a line

bundle Lρ := [(AY ss(θ)g×C∗×Cρ)/(G×C∗w)] on asδ(e)
√
L−θ/IgY by the Borel construction.

By virtue of the universal property of root gerbe, on Me = asδ(e)
√
L−θ/IgY , there is a

universal line bundle R that is the asδ(e)th root of the line bundle L−θ. The root bundle R is
determined by the character prC∗ :

prC∗ : G×C∗w → C∗w (g, w) ∈ G×C∗w 7→ w ∈ C∗w .

We have the relation

L−θ = Rasδ(e) .
The coordinate functions ~x and v of AY ss(θ)g × C∗ descents to be universal sections of line
bundles ⊕ρ∈[n]Lρ and L−θ ⊗R−⊗asδ(e) over Me, respectively.

14This will imply the multiplicity at q0 is (g, µ
δ(e)
s , 1)



A MIRROR THEOREM FOR GROMOV-WITTEN THEORY WITHOUT CONVEXITY 39

We will construct a universal family of C∗−fixed twisted stable maps to PYr,s of degree

(0, δ(e)r ) over Me:

Ce := Par,as(R⊕OMe
)

f //

π

��

PYr,s

Me := asδ(e)
√
L−θ/IgY .

Then the universal curve Ce over asδ(e)
√
L−θ/IgY can be represented as a quotient stack:

Ce = [(AY ss(θ)g×C∗×U)/(G×C∗w×T )] ,

where T = {(t1, t2) ∈ (C∗)2| tas1 = tar2 }. The right action is defined by:

(~x, v, x, y) · (g, w, (t1, t2)) = (~xg, θ(g)−1vw−asδ(e), wt1x, t2y) ,

for all (g, w, (t1, t2)) ∈ G×C∗w×T and (~x, v, (x, y)) ∈ AY ss(θ)g×C∗×U . Then Ce is a family of
orbifold curves parameterized by Me with all fibers isomorphic to Par,as.

There are two standard characters of T

χ1 : (t1, t2) ∈ T 7→ t1 ∈ C∗ χ2 : (t1, t2) ∈ T 7→ t2 ∈ C∗ ,
and we can lift them to be characters of G×C∗w×T by composing the projection map prT :
G×C∗w×T → T . By an abuse of notation, we continue to use χ1, χ2 to denote the new characters.
These two new characters defines two line bundles

M1 := (AY ss(θ)g×C∗×U)×G×C∗w×T Cχ1

and
M2 := (AY ss(θ)g×C∗×U)×G×C∗w×T Cχ2

on Ce by the Borel construction, respectively. We have the relation M⊗as1 = M⊗ar2 over Ce.
The universal map f from Ce to PYr,s can be described as follows: Let

f̃ : AY ss(θ)g×C∗×U → C∗×AY ss(θ)×U
be the morphism defined by:

(~x, v, x, y) ∈ AY ss(θ)g×C∗×U 7→

(v, (x1, · · · , xn), xaδ(e), yaδ(e)) ∈ C∗×AY ss(θ)×U .
(5.4)

Then f̃ is equivariant with respect to the group homomorphism from G×C∗w×T to G×C∗α×C∗t
defined by:

(g, w, (t1, t2)) ∈ G×C∗w×T 7→(
g ·
(
(t−s1 tr2)p1 , · · · , (t−s1 tr2)pk

)
, (wt1)aδ(e), t

aδ(e)
2

)
∈ G×C∗α×C∗t ,

(5.5)

where the tuple (p1, · · · , pk) ∈ Nk satisfies that g = (µp1
a , · · · , µpka ) ∈ G. Note that f̃ is well-

defined for χ−s1 χr2 is a torsion character of T of order a. The above construction gives the
universal morphism f from Ce to PYr,s by descent.

We will define a (quasi left) C∗−action on Ce such that the map f constructed above is
C∗−equivariant. Define a C∗-action on Ce induced by the C∗−action on AY ss(θ)g×C∗×U :

m : C∗ ×AY ss(θ)g×C∗×U → AY ss(θ)g×C∗×U ,

t · (~x, v, (x, y)) = (~x, v, (x, t
−1

arδ(e) y)) .

note that the morphism π is also C∗-equivariant, whereMe is equipped with trivial C∗-action.
By the universal property of the projectivized bundle Ce overMe, one has a tautological section

(5.6) (x, y) ∈ H0
(
(M1 ⊗ π∗R)⊕ (M2 ⊗ C −λ

arδ(e)
)
)
,
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which is also a C∗−invariant section.
Now we can check that f is a C∗−equivariant morphism from Ce to PYr,s with respect to

the C∗−actions for Ce and PYr,s. Similar to 4.2, f is equivalent to the following data:

(1) k + 2 C∗-equivariant line bundles on Ce:
Lj := π∗Lπj ⊗ (M−⊗s1 ⊗M⊗r2 )pj , 1 6 j 6 k

and
N1 := (M1 ⊗ π∗R)⊗aδ(e) N2 := M

aδ(e)
2 ⊗ C−λ

r
.

Where Lπj are the standard C∗-equivariant line bundles on Me by the Borel con-
struction, M1,M2 are the standard C∗-equivariant line bundles on Ce by the Borel
construction.

(2) a universal section

(u, ~x, (ζ1, ζ2)) :=(v, x1, · · · , xn, (xaδ(e), yaδ(e)))

∈ Γ
((

(N∨1 )⊗s ⊗ L−θ ⊗N⊗r2 ⊗ Cλ
)
⊕
⊕

16i6n

Lρi ⊕N1 ⊕N2

)C∗
.(5.7)

Here one only need to check v ∈ Γ((N∨1 )⊗s ⊗ L−θ ⊗ N⊗r2 ⊗ Cλ), which is easy to be
verified.

Now we compute the localization contribution from Me. Based on the perfect obstruction
theory for stable maps in K0,~m(PYr,s, (β, δr )), the restriction of the perfect obstruction theory
to Me decomposes into three parts: (1) the deformation theory of source curve Ce; (2) the
deformation theory of the lines bundles (Li)16j6k and N ; (3) the deformation theory for the
section

(u, ~x, (ζ1, ζ2)) ∈ Γ
((
N−⊗s1 ⊗ L−θ ⊗N⊗r2 ⊗ Cλ

)
⊕
⊕

16i6n

Lρi ⊕N1 ⊕N2

)
.

The C∗−fixed part of three parts above will contribute to the virtual cycle of Me, we will
show that [Me]

vir = [Me]. The virtual normal bundle comes from the C∗−moving part of the
above three parts.

First every fiber curve Ce in Ce over a geometrical point in Me is isomorphic to Par,as,
which is rational. There are no infinitesimal deformations/obstructions for Ce, line bundles
Lj := Lj |Ce , N1 := N1|Ce and N2 := N2|Ce . Hence their contribution to the perfect obstruction
theory comes from infinitesimal automorphisms. The infinitesimal automorphisms of Ce come
from the space of vector fields on Ce that vanish on special points. Thus the C∗−fixed part of
infinitesimal automorphisms of Ce comes from the 1−dimensional subspace of vector fields on Ce
which vanish on the two ramification points. The movable part of infinitisimial automorphisms
of Ce is nonzero only if one of ramification points on Ce is not a special point. by Remark 5.1,
the ramifications on Ce are both nontrivial stacky points when r and s are sufficiently large,
hence they must be special points. So there is no movable part for infinitesimal automorphisms
of Ce.

Now let’s turn to the localizations from sections. First the infinitesimal deformations of
sections (u, ~x) are fixed, which, together with fixed part of infinitesimal automorphisms of Ce
and line bundles Lj , N1, N2, as well as fixed parts of infinitesimal deformations of sections
(z1, z2) := (ζ1, ζ2)|Ce , contribute to the virtual cycle [Me]

vir, which is equal to the fundamental
class of Me. The localization contribution from the infinitesimal deformations of sections
(z1, z2) to the virtual normal bundle is:

(R•π∗(N1 ⊕N2))mov .

We first come to the deformations of z2, we continue to use the tautological section (x, y)
as in (5.6). For each fiber Ce, sections of N2 is spanned by monomials (xasmyn)|Ce with
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arm + n = aδ(e) and m,n ∈ Z>0. Note that xasmyn may not be a global section of N2 but
always a global section of R⊗asm⊗N2⊗C m

δ(e)
λ. Then R•π∗N2 will decompose as a direct sum

of line bundles, each corresponds to the monomial xasmyn, whose first chern class is

c1(R⊗−asm
⊗

C−m
δ(e)

λ) =
m

δ(e)
(Dθ − λ) .

So the total contribution is equal to

b δ(e)r c∏
m=0

(
m

δ(e)
(Dθ − λ)

)
.

The factor for m = 0 appearing in the above product is the C∗−fixed part of R•π∗N2, it will
contribute to the virtual cycle of Me. The rest contributes to the virtual normal bundle as

b δ(e)r c∏
m=1

(
m

δ(e)
(Dθ − λ)

)
.

Note that when r is sufficiently large, the above product becomes 1.
For the deformations of z1, arguing in the same way as z2, the Euler class of R•π∗N1 is equal

to
b δ(e)s c∏
n=0

(
n

δ(e)
(−Dθ + λ)

)
.

The factor for m = 0 appearing in the above product is the C∗−fixed part of R•π∗N1, it will
contribute to the virtual cycle of Me. The Euler class of virtual normal bundle of Me comes
from the movable part of deformations of section z1 is:

(5.8)

b δ(e)s c∏
n=1

(
n

δ(e)
(−Dθ + λ)

)
.

Note that when s is sufficiently large, the above product becomes 1.
In summary, when r, s are sufficiently large primes, we have [Me]

vir = [Me] and eC
∗
(Nvir) =

1.

5.3.3. Node contributions. The deformations in K0,~m(PYr,s, (β, δr )) smoothing a node contribute
to the Euler class of the virtual normal bundle as the first Chern class of the tensor product of
the two cotangent line bundles at the branches of the node. For nodes at which a component
Ce meets a component Cv over the vertex 0, this contribution is

(5.9)
λ−Dθ

asδ(e)
− ψ̄v
as
.

For nodes at which a component Ce meets a component Cv at the vertex over ∞, this
contribution is

(5.10)
−λ+Dθ

arδ(e)
− ψ̄v
ar
.

The type of node at which two edge components Ce and Ce′ meet with a vertex v over 0 or ∞
will not occur using a similar argument in [JPPZ17, Lemma 6].

As for the node contributions from the normalization exact sequence, each node q (specified
by a vertex v) contributes the Euler class of

(5.11)
(
R0π∗N1|q

)mov ⊕
(
R0π∗N2|q

)mov
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to the virtual normal bundle. In the case where j(v) = 0, z2|q ≡ 1 gives a trivialization of the

fiber N2|q, note that (N∨1 )⊗s⊗L−θ ⊗N⊗r2 ⊗Cλ ∼= C we have N2|q ∼= C and N1|q ∼= L
1
s

−θ ⊗Cλ
s
,

this implies that (R0π∗N2|q)mov = 0 and R0π∗N1|q = 0. The later vanishes because of the
nontrivial stacky structure of the line bundle N1 at q when s is sufficiently large. Hence there
is no localization contribution from the normalization at the node q over 0. Similarly, for each
node q incident to a vertex v with j(v) = ∞, there is no localization contribution from the
normalization at the node over ∞.

5.4. Total localization contributions. For each decorated graph Γ, denote FΓ to be the
fiber product ∏

v:j(v)=0

Mv ×Īµ s
√
L−θ/Y

∏
e∈E
Me ×Īµ r

√
Lθ/Y

∏
v:j(v)=∞

Mv

of the following diagram:

FΓ
//

��

∏
v:j(v)=0

Mv ×
∏
e∈E
Me ×

∏
v:j(v)=∞

Mv

evnodes
��∏

E

Īµ
s
√
L−θ/Y × Īµ r

√
Lθ/Y

(∆
1
s×∆

1
r )E // ∏

E

(
(Īµ

s
√
L−θ/Y )2 × (Īµ

r
√
Lθ/Y )2

)
,

where ∆
1
s = (id, ι)(resp. ∆

1
r = (id, ι)) is the diagonal map of Īµ

s
√
L−θ/Y (resp. Īµ

r
√
Lθ/Y ).

Here when v is a stable vertex, the vertex moduli Mv is described in 5.3.1; when v is an
unstable vertex over 0, we treat Mv := ι(Īm(h)Dj(v)) with [Me]

vir = [Me] and zero virtual
normal bundle., where m(h) is the multiplicity of the half-edge incident to v. The right-hand
vertical map is the product of the evaluation maps of the two branches at the gluing nodes for
each edge.

We define that [FΓ]vir to be:∏
v:j(v)=0

[Mv]
vir ×

Īµ
s
√
L−θ/Y

∏
e∈E

[Me]
vir ×

Īµ
r
√
Lθ/Y

∏
v:j(v)=∞

[Mv]
vir .

Then the contribution of decorated graph Γ to the virtual localization is is:

(5.12) ContΓ =

∏
e∈E sae

|Aut(Γ)|
(ιΓ)∗

(
[FΓ]vir

eC∗(Nvir
Γ )

)
.

Here ιF : FΓ → K0,~m(PYr,s, (β, δr )) is a finite étale map of degree |Aut(Γ)|∏
e∈E sae

into the correspond-

ing C∗-fixed loci in K0,~m(PYr,s, (β, δr )). The virtual normal bundle eC
∗
(Nvir

Γ ) is the product of
virtual normal bundles from vertex contributions ((5.2), (5.3)), edge contributions ((5.8)) and
node contributions ((5.9), (5.10)).

6. Recursion relations from auxiliary cycles

Let’s first fix some notations in this section. For any β ∈ Eff(W,G, θ), for simplicity, we will
denote

K0,~m(•, β) :=
⊔

d∈Eff(•)
(i•)∗(d)=β

K0,~m(•, d),

where • can be Y , r
√
Lθ/Y and s

√
L−θ/Y , and i• is the natural structure map from • to X

which factors through the inclusion iY : Y→ X.
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For any β?, β1, · · · , βm in Eff(W,G, θ) and p1, · · · , pm in Z>0, write β = β? +
∑m
i=1 βi and

p =
∑
i pi. We will denote ~ms ∪ ? to be(

(g−1
β1
, µβ1(Lθ)+p1
s ), · · · , (g−1

βm
, µβm(Lθ)+pm
s ), (gβ , µ

−β(Lθ)−p
s )

)
∈ (G×µs)m+1 ,

and define −→mr ∪ ? to be(
(g−1
β1
, µ−β1(Lθ)−p1
r ), · · · , (g−1

βm
, µ−βm(Lθ)−pm
r ), (gβ , µ

β(Lθ)+p
r )

)
∈ (G×µr)m+1 .

Then we have two natural structural morphisms

ε : K0,~mr∪?(
r
√
Lθ/Y , β?)→ K0,~m∪?(Y, β?)

and

ε : K0,~ms∪?(
s
√
L−θ/Y , β?)→ K0,~m∪?(Y, β?)

induced from the morphisms from r
√
Lθ/Y and s

√
L−θ/Y to Y by forgetting roots. Here the

tuple −→m ∪ ? for K0,−→m∪?(Y, β?) is

(g−1
β1
, · · · , g−1

βm
, gβ) ∈ Gm+1 .

We note that the right hand side of 1.4 can be written as

∞∑
m=0

∑
β?+β1+···+βm=β
p1+···+pm=p

1

m!
φα〈µβ1,p1(−ψ̄1), · · · , µβm,pm(−ψ̄m), φαψ̄

c
?〉0,~m∪?,β?

as µβi,pi(z) ∈ H∗(Īg−1
βi

Y.Q) for 1 6 i 6 m.

We will also need the two following definitions.

Definition 6.1. Let m, p be two nonnegative integers, β be a degree in Eff(W,G.θ), we denote
Λβ,p,m to the set of tuples(

β?, ((β1, p1), · · · , (βm, pm))
)
∈ Eff(W,G, θ)× (Eff × Z>0)m ,

where we require that β? +
∑m
i=1 βi = β,

∑
i pi = p and βi(Lθ) + p > 0 for 1 6 i 6 m. We call

an element of Λβ,p,m stable if β? 6= 0 or m > 2 when β? = 0.

We note that Λβ,p,m is a finite set as K0,m(X,β) is finite type over C, hence Noetherian.

Definition 6.2. For any degree β and nonnegative integers c and p, we define the function

Gβ,p,c :
⊕

β′∈Eff(W,G,θ),p′∈Z>0

β′(Lθ)+p′<β(Lθ)+p

⊕H∗(ĪµY )[z, z−1]]→ H∗(Īg−1
β
Y,Q) ,

which sends (
f(β′,p′)(z) : β′(Lθ) + p′ < β(Lθ) + p

)
to [ ∞∑

m=0

∑
Γ∈Λβ,p,m
Γ is stable

1

m!
(ẽv?)∗

( ∞∑
d=0

ε∗
(
cd(−R•π∗L

1
r

θ )(
λ

r
)−1+m−d(−1)d

∩ [K0,~mr∪?(
r
√
Lθ/Y , β?)]

vir
)
∩

m∏
i=1

ev∗i ( 1
δi

(fβi,pi(z))|z=λ−Dθ
δi

)

λ−ev∗iDθ
rδi

+ ψ̄i
r

∩ ψ̄c?
)]

λ−1

.

(6.1)

Here δi = βi(Lθ) + pi for 1 6 i 6 m, r is a sufficient large prime. We will write
(
f(β′,p′)(z) :

β′(Lθ) + p′ < β(Lθ) + p
)

as f<(β,p)(z) for short.
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6.1. Auxiliary cycle I. We will use the notations from §4 in this subsection. Fix a nonzero
pair (β, p) ∈ Eff(W,G, θ)×Z>0 and a positive rational number ε and the tuple ε = (ε, · · · , ε) ∈
(Q>0)p such that εβ(Lθ) + pε 6 1. Set δ = β(Lθ) + p. For simplicity, we will denote

Qθ̃0,?(PY
1
r ,p, (β, 1p,

δ

r
)) :=

⊔
d∈Eff(AY,G,θ)

(iY)∗(d)=β

Qθ̃0,1(PY
1
r ,p, (d, 1p,

δ

r
)) ∩ ev−1

1 (Ī(gβ ,µδr)PY
1
r ) .

Recall that gβ ∈ G is defined in §3. We will always assume that r is a sufficiently large prime
in this subsection.

For any nonnegative integer c, we will first consider the following auxiliary cycle:

(6.2)
1

p!
(ẼV?)∗

ψ̄c? ∩ p∏
j=1

êv∗j (t̂) ∩ [Qθ̃0,?(PY
1
r ,p, (β, 1p,

δ

r
))]vir

 .

Here an explanation of the notations is in order:

(1) The morphism EV? is a composition of the following maps:

Qθ̃0,?(PY
1
r ,p, (β, 1p, δr ))

ev? // ĪµPY
1
r

prr // ĪµY ,

where prr : ĪµPY
1
r → ĪµY is the morphism induced from the map from PY 1

r to Y

forgetting z1, z2. (ẼV?)∗ is defined by

ι∗(r?(EV?)∗)

as in (2.2). Note that here r? is the order of the band from the gerbe structure of ĪµY

but not ĪµPY
1
r .

(2) Recall that êvj is defined in (4.5). The cohomology class t̂ ∈ H∗(Y,Q)[t1, · · · , tl] is

of the form
∑l
i=1 tiui(c1(Lπj )), where ti are formal variables and ui are (arbitrary)

polynomials in the first chern class of the line bundles Lπj associated to the standard

characters πj of G = (C∗)k defined in 2.6.

Apply virtual localization to Qθ̃0,?(PY
1
r ,p, (β, 1p, δr )), we first prove the following vanishing

result, where the idea is borrowed from [JPT].

Lemma 6.3. Assume r is a sufficiently large prime. If localization graph Γ has more than
one vertex labeled by ∞, then the corresponding fixed loci moduli FΓ is empty, therefore it will
contribute zero to (6.2).

Proof. First we show that for any quasimap f : C → PY 1
r ,p in Qθ̃0,?(PY

1
r ,p, (β, 1p, δr )), we

have H1(C,N∨) = 0 (recall that the line bundle N is introduced in the definition of θ̃−stable
quasimap in §4.1 ). Indeed, using orbifold Riemann-Roch, we have

χ(N∨) = 1 + deg(N∨)− age(N∨|q?) = 0 ,

as deg(N∨) = −β(Lθ)+p
r , and age(N∨|q?) = 1 − β(Lθ)+p

r , then showing H1(C,N∨) = 0 is

equivalent to show H0(C,N∨) = 0. By Lemma 5.2, it remains to show that the degree of
the restriction of the line bundle N∨ to every irreducible component E of C is non-positive.
Observe thatN∨ is equal to the line bundle f∗O(−D∞), so the degree is equal to the intersection
number of [E] and the divisor −[D∞]. If the image of an irreducible component of C via f isn’t
contained in D∞, the restricted degree is obviously non-positive. If the image of an irreducible

component of C under f is contained in D∞, observe that O(−D∞) is isomorphic to (L
1
r

θ )∨

over

D∞ ∼= r
√
Lθ/Y
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then the O(−rD∞) is a line bundle pull-back of an anti-ample line bundle over Y , thus the
degree is also non-positive. This finishes the proof that H1(C,N∨) = 0.

Now assume by contradiction that the moduli of fixed-loci FΓ is nonempty, by the connect-
edness of the graph Γ, there is at least one vertex of the graph Γ labeled by 0 with at least
two edges attached. Suppose f : C → PY 1

r ,p belongs to the C∗−fixed loci FΓ. Assume that
C0 ∩C1 ∩C2 is part of curve C, where C0 is mapped by f to D0 (given by z1 = 0) and C1, C2

are edges meeting with C0 at b1 and b2. Then in the normalization sequence for R•π∗N
∨, it

contains the part

H0 (C0, N
∨)⊕H0 (C1, N

∨)⊕H0 (C2, N
∨)

→H0 (b1, N
∨)⊕H0 (b2, N

∨)

→H1 (C,N∨) .

Hence there is one of the weight-0 pieces in H0 (b1, N
∨)⊕H0 (b2, N

∨) that is canceled with a
weight-0 piece of H0 (C0, N

∨), and the other is mapped injectively into H1 (C,N∨), but this
contradicts that H1(C,N∨) = 0. So FΓ is empty. �

Recall that we can write I(q, t, z) =
∑
β,p q

βIβ,p as in §1.1.2, where Iβ,p := tp

p!zp Iβ(z) is a Lau-

rent polynomial in z, z−1 with coefficients in the homogeneous degree p part ofH∗(ĪµY,Q)[t0, · · · , tl].
We will prove the following recursion relation by applying localization to (6.9).

Theorem 6.4. For any nonnegative integer c, [zIβ,p]z−c−1 satisfies the following relation:

[zIβ,p]z−c−1 = Gβ,p,c
(
zI<(β,p)(z)

)
.(6.3)

where Gβ,p,c is defined in 6.2.

Proof. By Lemma 6.3, only decorated graph Γ which has only one vertex labeled by ∞, may
have nonzero localization contribution to the (6.2). We will denote the vertex labeled by ∞
to be v?. Note that the marking q? can only be incident to the vertex v? due to the choice
of the multiplicity at q?. Furthermore, for such graph Γ, we claim there is no stable vertex
labeled by 0. Indeed, for any vertex v over 0, its decorated degree (β(v), 1Jv ) satisfies that
β(v)(Lθ) + |Jv| 6 β(Lθ) + p 6 1

ε , and it has valence 1 as no legs can attach to it and at
most one edge is incident to it by Lemma 6.3, then the vertex v must be unstable. So the
decorated graph Γ has only one vertex over ∞ with possible several edges (can be empty)
attached, and each vertex labeled by 0 corresponds to an edge in the graph Γ and appears as
an unmarked point (actually a base point as we will see). In the following, we analyze the
localization contribution to (6.2) from the graph Γ described just before. We have two cases
which depends on whether the vertex v? on the graph Γ is stable or unstable.

(1) If the only vertex v? over ∞ is unstable, then it’s a vertex with valence 2, i.e, it’s
incident to a leg and an edge. In this case the degree (β, 1p, δr ) is concentrated on the
ramification point over 0 on the edge as a base point. Then it contributes

1

δ
(zIβ,p(z))|z=λ−Dθ

δ

· (λ−Dθ

δ
)c

to (6.2). Here we use the fact that the restriction of ψ̄? to Me is equal to λ−Dθ
δ .

(2) If the vertex v? is stable, then v? is incident to only one leg and possible several edges
(can be none). We assume that the vertex v? has degree (β∗,

δ∗
r ) with δ∗ = β∗(Lθ). If

there is no edges in the graph Γ, which happens if and only if β? = β and p = 0, the
corresponding graph has contribution

(6.4) (ẽv?)∗

( ∞∑
d=0

ε∗(cd(−R•π∗L
1
r

θ )(
−λ
r

)−1−d ∩ [K0,?(
r
√
Lθ/Y , β?)]

vir) ∩ ψ̄c?
)
.
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to the (6.2). Otherwise we label all the edges attached to the vertex v? from 1 to
m such that the edge ei corresponding to the index i has degree (βi, 1

Jei , δir ). Note
that the index is not unique, we will divided by m! to offset the labeling. is Since we

assume that the total degree is (β, 1p, δr ) = (β, 1p, β(Lθ)+p
r ), and the degree on every

edge satisfies the relation δi > βi(Lθ) + pi by Remark 4.5, where pi = |Jei |, then we
must have δi = βi(Lθ) + pi for every edge ei. It follows that all the edge has a base
point and (βi, pi) is nonzero.

Equipped with these notations, by Remark 4.4, the vertex moduli Mv? over ∞ is

K0,~mr∪?(
r
√
Lθ/Y , β?). Using the localization analysis in §4.3, the localization contri-

bution of the graph Γ to (6.2) is equal to

1

Aut(Γ)
(ẽv?)∗

( ∞∑
d=0

ε∗
(
cd(−R•π∗L

1
r

θ )(
−λ
r

)−1+m−d ∩ [K0,~mr∪?(
r
√
Lθ/Y , β?)]

vir
)

∩
m∏
i=1

ev∗i ( 1
δi

(z t
pi

zpi Iβi(q, z))|z=λ−Dθ
δi

)

−λ−ev
∗
iDθ

rδi
− ψ̄i

r

∩ ψ̄c?
)
,

(6.5)

where t =
∑
tiui(c1(Lτij ) + β(Lτij )z) and ε : K0,~mr∪?(

r
√
Lθ/Y , β?)→ K0,~m∪?(Y, β?) is

the natural structure map.
Now varying over all β∗, β1, · · · , βm and p1, · · · , pm and m, and labeling of edges.

The sum of (6.5) coming from all possible decorated graphs which has stable∞−vertex
v? yields:

∑
β?+β1+···+βm=β
p1+···+pm=p

(βi,pi)6=0 for 16i6m

1

m!
(ẽv?)∗

( ∞∑
d=0

ε∗
(
cd(−R•π∗L

1
r

θ )(
−λ
r

)−1+m−d

∩ [K0,~mr∪?(
r
√
Lθ/Y , β?)]

vir
)
∩

m∏
i=1

ev∗i ( 1
δi

(zIβi,pi(z))|z=λ−Dθ
δi

)

−λ−ev
∗
iDθ

rδi
− ψ̄i

r

∩ ψ̄c?
)
.

(6.6)

In summary, the auxiliary cycle (6.2) is equal to:

1

δ
(zIβ,p(z))|z=λ−Dθ

δ

· (λ−Dθ

δ
)c

+

∞∑
m=0

∑
β?+β1+···+βm=β
p1+···+pm=p

(βi,pi) 6=0 for 16i6m

1

m!
(ẽv?)∗

( ∞∑
d=0

ε∗
(
cd(−R•π∗L

1
r

θ )(
−λ
r

)−1+m−d

∩ [K0,~mr∪?(
r
√
Lθ/Y , β?)]

vir
)
∩

m∏
i=1

ev∗i ( 1
δi

(zIβi,pi(z))|z=λ−Dθ
δi

)

−λ−ev
∗
iDθ

rδi
− ψ̄i

r

∩ ψ̄c?
)
.

(6.7)

Observe that (6.2) does not have negative λ powers, then the λ−1 coefficient in the equation
(6.7) is equal to zero. Note that the λ−1 coefficient in (6.7) is equal to

[zIβ,p(z)]z−c−1 −Gβ,p,c(zI<(β,p)(z)) .(6.8)

Now (6.8) immediately implies the formula (6.3).
�
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6.2. Auxiliary cycle II. We will use the notations from §5 in this subsection. Let µ(z) =∑
β,p q

βµβ,p(z) as in the introduction 1.1.2. For any nonzero pair (β, p), denote δ = β(Lθ) +

p. Assume that r, s are sufficiently large primes, we will also compare (6.2) to the following
auxiliary cycle:

∞∑
m=0

∑
β?+β1+···+βm=β
p1+···+pm=p

1

m!
(ẼV?)∗

( m∏
i=1

ev∗i
(
pr∗r,s(µβi,pi(−ψ̄i))

)
∩ ψ̄c? ∩ [K0,~m∪?(PYr,s, (β?,

δ

r
))]vir

)(6.9)

Here an explanation of the notations is in order:

(1) For any nonnegative integers p1, · · · , pm, and degrees β?, β1, · · · , βm in Eff(W,G, θ), we
denote the tuple of multiplicities ~m ∪ ? to be(

(g−1
β1
, µβ1(Lθ)+pi
s , 1), · · · , (g−1

βm
, µβm(Lθ)+pm
s , 1), (gβ , 1, µ

δ
r)
)

to define K0,~m∪?(PYr,s, (β?, δr )).
(2) The morphism EV? is a composition of the following maps:

K0,~m∪?(PYr,s, (β?, δr ))
ev? // ĪµPYr,s

prr,s // ĪµY ,

where prr,s : ĪµPYr,s → ĪµY is the morphism induced from the natural structure map

from PYr,s to Y forgetting u and z1, z2, and (ẼV?)∗ is defined by

ι∗(r?(EV?)∗)

as in 2.2. Note that here r? is the order of the band from the gerbe structure of ĪµY
but not ĪµPYr,s.

First we have a similar vanishing result as Lemma 6.3 by an analogous argument.

Lemma 6.5. Assume r is sufficiently large. If the localization graph Γ has more than one vertex
labeled by ∞, then the corresponding fixed loci moduli FΓ is empty, therefore it will contribute
zero to (6.9).

For any pair (β, p) ∈ Eff(W,G, θ)× Z>0, we define Jβ,p(z) in (6.11) to be:

Jβ,p(z) := µβ,p(z) +

∞∑
m=0

∑
β?+β1+···+βm=β
p1+···+pm=p

1

m!

(ẽv?)∗

(
[K0,~m∪?(Y, β?)]

vir ∩
m⋂
j=1

ev∗j (µβj ,pj (−ψ̄j)) ∩
1

z − ψ̄?

)
.

(6.10)

We will prove the following recursion relation by applying localization to (6.9).

Theorem 6.6. For any nonnegative integer c, we have the following relation:

[Jβ,p]z−c−1 = Gβ,p,c
(
J<(β,p)(z)

)
.(6.11)

where Gβ,p,c is defined in 6.2.

Proof. By Lemma 6.5, only decorated graph Γ that has only one vertex labeled by∞ may have
nonzero localization contribution to the (6.9). Let’s denote the unique vertex over ∞ by v?
with decorated degree β?. Note that the leg ? must be incident to the vertex v? due to the
choice of multiplicity at the leg ?. Thus the vertex v? can’t be a node linking two edges. Note
that we can assume that all the other legs should be incident with the vertexes labeled by 0
due to the choice of multiplicity on the other legs and the fact µ0 = 0. Then there are only two
types of graph Γ depending on whether v? is stable or unstable.
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(1) If the vertex v? in Γ is unstable. In the case, v is of valence 2, i.e. it’s incident to
an edge and an leg corresponding to the marking q?. Then Γ has only one edge with
decarated degree δ, and has only one vertex over 0, which is incident to the edge. The
vertex over 0 can be stable or unstable. If the vertex over 0 is unstable, it must be a
marked point with input µβ,p, then the graph Γ contributes

µβ,p(
λ−Dθ
δ )

δ
· (λ−Dθ

δ
)c

to (6.9). Otherwise, this type of graphs contributes

∞∑
m=0

∑
β?+β1+···+βm=β
p1+···+pm=p

1

m!
(ẽv?)∗

( ∞∑
d=0

ε′∗
(
cd(−R•π∗L

1
s

−θ)(
λ

s
)−d

∩ [K0,~ms∪?(
s
√
L−θ/Y , β?)]

vir
)
∩

m⋂
i=1

ev∗i (µβi,pi(−ψ̄i)) ∩
1
δ (
λ−ev∗?Dθ

δ )c

λ−ev∗?Dθ
sδ − ψ̄?

s

)
to (6.9). By Lemma 6.7 proved below, the above formula is equal to

∞∑
m=0

∑
β?+···+βm=β
p1+···+pm=p

1

m!
φα〈µβ1,p1

(−ψ̄1), · · · , µβm.pm(−ψ̄m),
1
δ (λ−Dθδ )cφα
λ−Dθ
δ − ψ̄?

〉0,~m∪?,β? .

In summary, the localization contribution from the decorated graphs of which the
vertex v? is unstable contributes

µβ,p(
λ−Dθ

δ
) · (λ−Dθ

δ
)c

+

∞∑
m=0

∑
β?+β1+···+βm=β
p1+···+pm=p

1

m!
φα〈µβ1,p1

(−ψ̄1), · · · , µβm,pm(−ψ̄m),
1
δ (λ−Dθδ )cφα
λ−Dθ
δ − ψ̄?

〉0,~m∪?,β?
(6.12)

to the (6.9).
(2) If the vertex v? in Γ is stable, v? is incident to only one leg (corresponding to the

marking q?) and m edges (m can be 0). Let’s assume that the vertex v? is decorated by
the degree β?. If there is no edges in the graph Γ, which happens if and only if β? = β
and p = 0. Then this has contribution:

(6.13) (ẽv?)∗

( ∞∑
d=0

ε∗
(
cd(−R•π∗(f∗L

1
r

θ ))(
−λ
r

)−1−d ∩ [K0,?(
r
√
Lθ/Y , β)]vir

)
∩ ψ̄c?

)
to (6.9). Otherwise, there are m (m > 1) edges attached to the vertex v, let’s index
them by [m] := {1, · · · ,m}. Let δi be the degree associated with the ith edge ei. On
each edge ei there is exactly one vertex vi over 0 incident to it, which can’t be a unstable
vertex of valence 1 (see Remark 5.1) or a node linking two edges by Lemma 6.5. So vi
corresponds to either a marking or a stable vertex. There are possible l marked points
(l can be zero) on it, let’s label the legs incident to vi by {i1, · · · , il} ⊂ [n] (n is the
total number of legs on Γ). Note that when vi is unstable, l = 1.

Assume that the vertex vi is decorated by the degree βi0. Since the insertion at the
marking qij on the curve15 Cvi corresponding to vi is of the form µβij ,pij (−ψ̄ij) in (6.9),
let’s say the leg for qij has virtual degree (βij , pij) contribution to the vertex vi, denote
βi to be summation of βi0 and the degrees βij from the markings on Cvi , and pi to be

15When v is unstable, we just take v to be qi1.
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the summation of pij from the markings on cvi . We call (βi, pi) the total degree at the
vertex vi. From the (6.9), one has

β? + β1 + · · ·+ βm = β, p1 + · · ·+ pm = p .

Note that to ensure such a graph Γ exists, one must have

(6.14) βi(Lθ) + pi = δi .

Indeed, by Riemann-Roch Theorem, one has

deg(N1|Cvi ) = −βi0(Lθ)

s
= (1− δi

s
) +

l∑
j=1

βij(Lθ) + pij
s

mod Z .

Here the first term on the right hand is the age of N1 at the node of Cvi , and the second
term on the right is the sum of the ages of N1 at the marked points on Cvi . As s is
sufficiently large, one must have

δi
s

=
βi0(Lθ)

s
+

l∑
j=1

βij(Lθ) + pij
s

,

which implies that βi(Lθ) + pi = δi.

β?

β10

q?

βm0

µβ11,p11

µβ1l,p1l

Figure 1. The ellipse dubbed gray on the right means the vertex labeled by
∞ with a leg attached, and the two big circles on the left mean vertexes labeled
by 0. The text inside the vertex means the decorated degree for this vertex.
On the upper left vertex, texts near the legs mean the insertion terms. On
the bottom left vertex, we assume that there is no legs attached to it. The
three grey dots in the middle mean the other edges (together with its incident
vertexes and legs on them) besides edges indexed by 1 and m.

Now we can group the decorated graphs by elements of Λβ,p,m. For each element
(m,β?, ((β1, p1), · · · , (βm, pm))) in Λβ,p,m. denoted by Λ(m,β?,((β1,p1),··· ,(βm,pm))) the
collection of all the edge-labeled decorated graphs such that the vertex incident to
the edge labeled by i has total degree (βi, pi) and the decorated data for each vertex
and incident half-edge over 0 satisfies (6.14). Note that our definition of the edge-
labeled decorated graph has more decorations than the decorated graph introduced in
Section 5 as we also label the edges. Then the automorphism group of an admissible
decorated graph Γ is identity, which is usually smaller than the automorphism group
of the corresponding decorated graph without labeling the edges. If we want to use
admissible decorated graphs to compute the localization contribution, we need to divide
m! to offset the labeling as shown below.
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Now we use the localization formula in §5.4 to compute the contribution from
Λ(m,β?,((β1,p1),··· ,(βm,pm)) to (6.9). Summing over the contribution of the vertex vi to-
gether with node hi at vi from all graphs in Λ(m,β?,((β1,p1),··· ,(βm,pm)), and pushing

forward to Īg−1
β
Y ∼= Ī

(g−1
β ,e

δi
s )
Y along ι ◦ (evhi)∗, it yields

µβi,pi(
λ−Dθ

δi
) +

∞∑
l=0

∑
β?+β1+···+βl=βi
p1+···+pl=pi

1

l!
(ẽv?)∗

( ∞∑
d=0

ε′∗
(
cd(−R•π∗L

1
s

−θ)(
λ

s
)−d

∩ [K0,~l∪{0}(
s
√
L−θ/Y , β?)]

vir
)
∩

l⋂
j=1

ev∗j (µ(βj ,pj)(−ψ̄j)) ∩
1

λ−ev∗?Dθ
δis

− ψ̄0

s

)
,

which, by Lemma 6.7 below, is equal to Jβi,pi(z)|λ−Dθ
δi

.

Note that all decorated graphs Γ in Λ(m,β?,((β1,p1),··· ,(βm,pm)) have the same localiza-
tion contribution for the unique vertex v? labeled by ∞, the edge ei and the node over
∞ incident to ei. As the localization formula for any graph in Λ(m,β?,((β1,p1),··· ,(βm,pm))

depends multi-linearly on the contributions of vertexes over 0. Now go over all possible
triples (m,β?, ((β1, p1), · · · , (βm, pm))), it yields the summation:

∞∑
m=1

∑
β?+β1+···+βm=β
p1+···+pm=p

1

m!
(ẽv?)∗

( ∞∑
d=0

ε∗
(
cd(−R•π∗L

1
r

θ )(
−λ
r

)−1+m−d ∩ [K0,~mr ∪?(
r
√
Lθ/Y , β?)]

vir
)

∩
m∏
i=1

ev∗i ( 1
δi

(fβi,pi(z)|z=λ−Dθ
δi

)

−λ−ev
∗
iDθ

rδi
− ψ̄i

r

∩ ψ̄c?
)
.

(6.15)

Combing 6.16 and 6.15, we can write (6.9) as the following:

µβ,p(
λ−Dθ
δ )

δ
· (λ−Dθ

δ
)c +

∞∑
m=0

∑
β?+β1+···+βm=β
p1+···+pm=p

1

m!
(ẽv?)∗

(
[K0,~m∪?(Y, β?)]

vir ∩
m⋂
i=1

ev∗i (µβi,pi(−ψ̄i))
⋂ 1

δ (
λ−ev∗?Dθ

δ )c

λ−ev∗?Dθ
δ − ψ̄?

)

+

∞∑
m=0

∑
β?+β1+···+βm
p1+···+pm=p

(βi,pi)6=0 for all 1 6 i 6 m

1

m!
(ẽv?)∗

( ∞∑
d=0

ε∗(cd(−R•π∗L
1
r

θ )(
−λ
r

)−1+m−d

∩ [K0,~mr∪?(
r
√
Lθ/Y , β?)]

vir) ∩
m∏
i=1

ev∗i ( 1
δi

(Jβi,pi(z)|z=λ−Dθ
δi

)

−λ−ev
∗
iDθ

rδi
− ψ̄i

r

∩ ψ̄c?
)
.

(6.16)

As (6.9) lies in H∗(ĪµY,Q)[λ][t1, · · · , tl], the coefficient of λ−1 term in (6.16) must vanish.
Note that the coefficients before λ−1 in the first two terms in (6.16) yields (after replacing the
index 0 by ?)

∞∑
m=0

∑
β?+β1+···+βm=β
p1+···+pm=p

1

m!
φα〈µβ1,p1

(−ψ̄1), · · · , µβm,pm(−ψ̄m), φαψ̄
c
?〉0,~m∪?,β? ,

which is the left hand side of equality in (6.11). Then we extract the coefficient of the λ−1 term
in the third term in (6.16), this yields the term on the right hand side of (6.11) up to a minus
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sign, where we note if (βi, pi) 6= 0, then βi(Lθ) + pi < β(Lθ) + p. This completes the proof of
(6.11). �

Lemma 6.7. For any β?, β1, · · · , βm in Eff(W,G, θ) and p1, · · · , pm in Z>0, write β = β? +∑m
i=1 βi and p =

∑
i pi. When s is sufficiently large, one has

ε∗
( ∞∑
d=0

cd(−R•π∗L
1
s

−θ)(
λ

s
)−d ∩ [K0,~ms∪?(

s
√
L−θ/Y , β?)]

vir
)

=
1

s

(
[K0,~m∪{?}(Y, β?)]

vir ,(6.17)

Here ε : K0,~ms∪?(
s
√
L−θ/Y , β?)→ K0,~m∪?(Y, β?) is the natural structure map.

Proof. We will first show that R0π∗L
1
s

−θ = 0 on K0,~ms∪?(
s
√
L−θ/Y , β?), which implies that

R1π∗L
1
s

−θ = 0 as R•π∗L
1
s

−θ has virtual rank 0 when s is sufficiently large. By Remark 5.3, when

β? 6= 0, we have R0π∗L
1
s

−θ = 0. So it remains to prove the case when β? = 0. Assume now

that β? = 0, as the corresponding moduli is stable, we have m > 2. Let f : C → s
√
L−θ/Y be

a stable map in K0,~ms∪?(
s
√
L−θ/Y , β?). Assume qi is one of the marked points with insertion

µβi,pi . Without loss of generality, we can assume (βi, pi) 6= 0 for all i as µ0(z) = 0 by the very
definition. Note that we have

ageqi((L
1
s

−θ)|C) =
βi(Lθ) + pi

s
6= 0 ,

then the restricted line bundle L
1
s

−θ := (L
1
s

−θ)|C can’t have any nonzero section on C. Indeed

the degree of the restriction of L
1
s

−θ to every irreducible component is zero by Lemma 2.5 as the

total degree β? is zero, then a nonzero section of L
1
s

−θ will trivialize the line bundle L
1
s

−θ, this

contradicts the fact that L
1
s

−θ has nontrivial stacky structure at qi.

Now as −R•π∗L
1
s

−θ = R1π∗L
1
s

−θ = 0, (6.17) follows immediately from the identity

ε′∗([K0,~ms∪?(
s
√
L−θ/Y, β?)]

vir) =
1

s
[K0,~m∪?(Y, β?)]

vir ,

which is proved in [TT16, Theorem 5.16]. �

6.3. Proof of Main Theorem. Using the notation in the introduction, now we prove the
main theorem 1.1:

Proof. According to the analysis in the introduction, it suffices to prove the following:

[zIβ,p(z)]z−c−1 =
∞∑
m=0

∑
β?+β1+···+βm=β
p1+···+pm=p

1

m!
φα〈µβ1,p1

(−ψ̄1), · · · , µβm,pm(−ψ̄m), φαψ̄
c
?〉0,~m∪?,β? ,(6.18)

for any nonnegative integer c and nonzero pair (β, p). Now (6.18) immediately follows from
Theorem 6.4 and 6.6. �

Remark 6.8. The proof of the mirror theorem here is quite robust; the main geometrical
construction including twisted graph space and root stack construction, and recursive relations
can be directly generalized to all proper GIT targets considered in quasimap theory. Hence we
expect the method developed here can be used to prove the genus zero quasimap wall-crossing
conjecture for all proper GIT targets considered in quasimap theory.
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7. An example

In this section, we will recover the quantum product computation by Corti for a cubic
hypersurface Y which is cut off by the polynomial x3

1 + x3
2 + x3

3 + x4x1 in P(1, 1, 1, 2). The
following is the table for (small) quantum product of Y obtained by Corti (see [MH14]):

1 p p2
1 1

2

1 1 p p2
1 1

2

p p2 + 12r2 + 3r1 1
2

12r2p rp

p2 108r4 + 36r3
1 1

2
12r3

1 1
2

1
3p

2 − 3r1 1
2

Here r = 1
2q

16, p is the hyperplane class of Y and 1 1
2

is the fundamental class of the unique non-

trivial twisted sector of H∗(ĪµY,Q). Due to the discussion in [MH14], the usual (O(3), Euler)-
twisted I-function of P(1, 1, 1, 2) only recovers the first two rows, and the rest two rows rely on
Corti’s key calculation

(7.1) (1 1
2
◦ 1 1

2
,1 1

2
) =
−3

2
r .

In the following, we will recover Corti’s key calculation using the I-function by choosing a
different GIT presentation of P(1, 1, 1, 2).

Choose the matrix

ρ =

(
1 1 1 2 0
0 0 0 1 1

)
: Z2 → Z5 ,

which gives the action of G := C∗t × C∗z on W := C5 so that the GIT (stack) quotient is
still P(1, 1, 1, 2) (with the choice of stability condition θ = t2z3, this also corresponds to the
S-extended data S = { 1

2} in the sense of [CCIT19, CCIT15]). Consider the polynomial zx3
1 +

zx3
2 + zx3

3 + x4x1, then it cuts off a hypersurface in the new GIT stack quotient [W ss(θ)/G].
Note that Y comes from the line bundle Lt3z on [W/G], which is not semi-positive as the
following table shows.

The semigroup Eff(W,G, θ) is generated by β1, β2 ∈ Hom(χ(G),Q) such that(
β1(Lt) β1(Lz)
β2(Lt) β2(Lz)

)
=

(
1
2 0
− 1

2 1

)
.

Then we can think q := qβ1 generates the semigroup of degrees of stable maps to the hypersur-
face Y and x := qβ2 is a formal variable.

By §3.1, the small I-function of Y using this new GIT presentation of P(1, 1, 1, 2) is

16In [MH14], they use r = 1
2
q

1
2 , their q

1
2 corresponds our q here.
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I(q, x, z) =
∑

(l,k)∈N2

3l−k
2 >0

qlxk

zkk!

∏
i<0(p+ ( l−k2 − i)z)

3∏
i< l−k

2
(p+ ( l−k2 − i)z)3

1∏
06i<l(2p+ (l − i)z)

∏
06i< 3l−k

2

(
3p+ (

3l − k
2
− i)z

)
1 k−l

2

+
∑

(l,k)∈N2

3l−k
2 ∈Z<0

qlxk

zkk!

∏
l−k

2 <i<0(p+ ( l−k2 − i)z)
3∏

06i<l(2p+ (l − i)z)

1∏
3l−k

2 <i<0

(
3p+ ( 3l−k

2 − i)z
) 1

3
p2

+
∑

(l,k)∈N2

3l−k
2 ∈Q<0\Z<0

qlxk

zkk!

∏
l−k

2 <i<0(p+ ( l−k2 − i)z)
3∏

06i<l(2p+ (l − i)z)

1∏
3l−k

2 <i<0

(
3p+ ( 3l−k

2 − i)z
)1 k−l

2
.

(7.2)

where 1 k−l
2

= 1 1
2

if k − l is odd, otherwise 1 k−l
2

= 1. We can show the following fact about

I(q, x, z):

(7.3) I(q, x, z) = 1 +
x1 1

2
+ qx1

z
+O(x3) +O(

1

z2
) ,

(7.4)
∂I(q, x, z)

∂x
=
1 1

2
+ q1

z
+
x(q2

1 + 1
3p

2 +
q1 1

2

2 )

z2
+O(x2) +O(

1

z3
) ,

and

(7.5)
∂2I(q, x, z)

∂2x
=
q2
1 + 1

3p
2 +

q1 1
2

2

z2
+O(x) +O(

1

z3
) .

Since −ze
qx
z I(q, x,−z) is a slice on the Givental’s cone by string flow and have the asympotic

following expansion

(7.6) ze
−qx1
z I(q, x, z) = z1 + x1 1

2
+O(x3) +O(

1

z
) .

Then

(7.7) ze
−qx1
z I(q, x, z) = JGiv(q, x1 1

2
, z) +O(x3) ,

where JGiv(q, t, z) is Givental’s J−function which has an asymptotic expansion

(7.8) z1 + t+O(
1

z
) ,

and t =
∑
tαφα ∈ H∗(ĪµY,Q). We have the following standard fact about Givental’s J−function

(c.f. [Giv04]):

(7.9) z
∂

∂tα

∂

∂tβ
JGiv(q, t, z) = φα ?t φβ +O(z−1) .
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Now consider the function

(7.10) z
∂2

∂2x

(
ze
−qx1
z I(q, x, z)

)
,

a direction computation using product rule yields:

(7.11) q2e
−qx1
z I(q, x, z)− 2zqe

−qx1
z

∂

∂x
I(q, x, z) + z2e

−qx1
z

∂2

∂2x
I(q, x, z) .

Apply (7.3), (7.4), (7.5) to the first term, second term and third term in (7.11), respectively,
we have the following asymptotic expansion of (7.10):

(7.12) q2
1− 2q(1 1

2
+ q1) + (q2

1 +
1

3
p2 +

q1 1
2

2
) +O(x) +O(z−1) .

On the other hand, using equation (7.7), (7.9), one has another asymptotic expansion about
(7.10):

(7.13) 1 1
2
?x 1 1

2
+O(x) +O(z−1) .

Compare (7.12) and (7.13), after evaluating x = 0 and ignoring all negative z powers, we have

1 1
2
◦ 1 1

2
=

1

3
p2 − 3

2
q1 1

2
,

which recovers Corti’s calculation17 (7.1)!
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[BCFK08] Aaron Bertram, Ionuţ Ciocan-Fontanine, and Bumsig Kim, Gromov-witten invariants for abelian
and nonabelian quotients, Journal of Algebraic Geometry 17 (2008), no. 2, 275–294. ↑1

[Bro13] Jeff Brown, Gromov–Witten Invariants of Toric Fibrations, International Mathematics Research

Notices 2014 (2013Jul), no. 19, 5437–5482. ↑5
[CDLOGP91] Philip Candelas, Xenia C. De La Ossa, Paul S. Green, and Linda Parkes, A pair of Calabi-Yau

manifolds as an exactly soluble superconformal theory, Nuclear Physics B 359 (1991Jul), no. 1,

21–74. ↑1
[CL11] H.-L. Chang and J. Li, Gromov-Witten Invariants of Stable Maps With Fields, International

Mathematics Research Notices 2012 (2011), no. 18, 4163–4217. ↑28

17Here the small quantum product ◦ is defined by the specialization of the big quantum product ?t to t = 0.



A MIRROR THEOREM FOR GROMOV-WITTEN THEORY WITHOUT CONVEXITY 55

[CLLL16] Huai-Liang Chang, Jun Li, Wei-Ping Li, and Chiu-Chu Melissa Liu, An Effective Theory of

Gw and Fjrw Invariants of Quintics Calabi-Yau Manifolds, ArXiv e-prints (2016), available at

1603.06184. ↑18, 24
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